

Model-Driven Design Using Business Patterns

Pavel Hruby

Model-Driven Design
Using Business Patterns
with Contributions by
Jesper Kiehn and Christian Vibe Scheller

With 230 Figures and 3 Tables

123

Author

Pavel Hruby

Microsoft Development Center Copenhagen
Frydenlunds Allé 6
2950 Vedbæk, Denmark
phruby@acm.org

http://reatechnology.com
http://phruby.com

Library of Congress Control Number: 2006927040

ACM Computing Classification (1998): D.2.11, H.1, J.1

ISBN-10 3-540-30154-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30154-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typeset by the author
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover design: KünkelLopka Werbeagentur, Heidelberg

Printed on acid-free paper 45/3100/YL - 5 4 3 2 1 0

To Mom and Dad

Preface

This book describes the REA (resources, events, agents) model, which is
going to revolutionize the way the software business applications are de-
veloped. REA specifies the fundamental laws of the business domain.
Knowing these laws radically enhances the application designers’ potential
to configure business solutions without omissions, and ensures consistency
of software applications from the business perspective:

The application design based on REA is concise and easy to understand
both for the users of software applications, for consultants, and for ap-
plication developers. REA is a ubiquitous language ensuring unambigu-
ous communication and understanding among all participants of the
software development process.
Software applications based on REA contain more business knowledge
than applications developed merely from user requirements, and can
therefore advise and guide the users during development and configura-
tion, without restricting the end-users at runtime.
The same modeling principles are used across all application areas in
the business domain; the sales, procurement, production, marketing,
human resources, finance, and other areas are described by a common
set of patterns.
As REA software applications store the primary data about economic
resources, all reports and all accounting artifacts are always consistent,
because they are derived from the same data; for example, the data de-
scribing the sale event is used in the warehouse management, payroll,
distribution, finance and other application areas, without transforma-
tions or adjustments.
The REA model provides for more complete, transparent, and up-to-
date reporting for business decision makers than reporting based on the
accounting artifacts, which dominates in current business applications.

REA can be extended using a number of patterns that comprise func-
tionality necessary to build business applications that meet specific busi-
ness needs. REA alone specifies domain rules assuring that the application

VIII Preface

model is sound from the business perspective, and forms the backbone of
the application model. Knowing REA is useful but not sufficient to build a
business application; similarly, knowing only Maxwell’s laws is not suffi-
cient to build a radio transmitter and receiver. We describe the patterns that
extend REA in Part II of this book, Behavioral Patterns.

This book is primarily intended for

Software architects, visionary managers, and anyone interested in un-
derstanding REA, and its strengths and limitations.
Application developers designing business applications, and interested
in the consistency that accrues from the REA model.
Framework developers designing business frameworks, looking for gen-
eral business domain concepts and for the principles that apply to these
concepts.
Students of university courses on enterprise information architectures.

We also include two implementation chapters illustrating how easy it is
to build an REA-based software application, and how to implement the
behavioral business patterns. A complete REA business application con-
taining the code samples from this book can be downloaded from
http://www.reatechnology.com.

Structure of This Book

Part I, Structural Patterns, describes the REA model in detail. This part de-
scribes REA at the operational level (the level of actual business transac-
tions), and at the policy level, specifying which transactions could or
should happen. This part includes an implementation chapter that includes
executable code of an REA business application.

Part II of this book, Behavioral Patterns, describes the patterns that ex-
tend REA with the functionality necessary to meet specific needs of the
users of a business application. This part also includes an implementation
chapter containing code for several behavioral patterns, as well as for the
infrastructure necessary to run the implementation.

Part III of this book, Modeling Handbook, illustrates REA models in
which the use of REA is less straightforward, such as insurance, guaran-
tees and taxes.

Appendix A describes REA as an ontology for business systems; we
recommend this to readers interested in the theoretical foundations of
REA.

Preface IX

Appendix B, Notes on Modeling, describes the relationships between
models, metamodels and the real world, describes how we use UML in this
book, illustrates REA models at various levels of granularity, and explains
modeling viewpoints in REA, the REA models in the trading partner view
and the independent view.

Appendix C, Patterns and Pattern Form, describes the pattern form used
for the patterns in this book.

The pattern map on the next page shows the patterns described in this
book. The purpose of the model at the operational level, i.e., the REA
EXCHANGE PROCESS, REA CONVERSION PROCESS and REA VALUE
CHAIN, is to describe what happened or was just happening in the user’s
business. The entities in these patterns determine the skeleton of the appli-
cation model.

This skeleton can be extended by adding the entities described in the
patterns TYPE, GROUP, COMMITMENT, CONTRACT, SCHEDULE,
POLICY, LINKAGE, RESPONSIBILITY, and CUSTODY. These patterns
describe what could, should, or should not happen in the user’s business.
We call these REA models the policy level.

While all well-designed business applications more or less follow the
structure described in the structural patterns, the behaviors of different
business applications differ significantly, because specific requirements of
the users of the business applications differ. Therefore, the REA structural
skeleton at the operational and policy levels can be extended by patterns
that model specific behaviors of the business application. We refer to these
patterns as behavioral patterns. The patterns of general use are
IDENTIFICATION, DUE DATE, DESCRIPTION, NOTE, LOCATION,
CLASSIFICATION, NOTIFICATION, and VALUE; the patterns POSTING,
ACCOUNT, RECONCILIATION, and MATERIALIZED CLAIM have their
origins in financial applications. We will also describe a pattern for invent-
ing new behavioral patterns called INVENTOR’S PARADOX.

X Preface

What Could, Should or Should not Happen

What Has Happened

trade production
business processes

homogeneous
collections

heterogenous
collections

future events
commitments

in trade
business rules

commitments in
production

structure of
resources

structure of
agents

responsibility
for resources

identity of entities

grouping where events occur

keep history retrieve history

deadlines

invoices

match transactions

external info internal info

message

units of measure

how to discover new behavioral patterns

start here

Pattern Map

Preface XI

There are two natural starting points to using the patterns in this book. If
an application designer is able to identify the economic resources the users
want to plan, monitor, and control using the business application, then we
can start with the REA EXCHANGE PROCESS or REA CONVERSION
PROCESS patterns and integrate the processes into the REA VALUE
CHAIN. If application designers are not able to identify the economic re-
sources, we can start with the REA VALUE CHAIN, and, using functional
decomposition of the processes, identify the level at which users want to
plan, monitor and control the resources, and then, by applying the REA
EXCHANGE PROCESS and REA CONVERSION PROCESS patterns,
identify the economic events and agents.

Internet Resources

The web site http://reatechnology.com contains executable code for the
REA application Joe’s Pizzeria, described in this book, as well as some
non-trivial REA models, extending those included in Part III, Modeling
Handbook. The mailing list at http://groups.yahoo.com/REATechnology is
a forum for researchers interested in theoretical foundations of REA, as
well as in solving specific modeling problems. The web site
http://hillside.net/ is dedicated to patterns in software development in gen-
eral. UML diagrams in this book have been produced using Microsoft
Visio with a UML stencil available at http://phruby.com.

Acknowledgements

This book would not have been possible without the help of two distin-
guished gentlemen, Jesper Kiehn and Christian Scheller.

First and foremost, Jesper Kiehn is one of few people who truly under-
stand what REA ontology is all about. Thanks to Jesper’s passion and en-
thusiasm, countless long discussions and arguments, during which we
gradually began to understand REA, and the laws of the business domain.
Jesper’s many brilliant ideas helped me understand the full potential of
REA, what modeling business software really means, ontologies, knowl-
edge management, and their consequences in sometimes surprisingly dif-
ferent application domains.

Christian Scheller is the inventor of the architecture that utilizes or-
thogonal separation of concerns in business domain. Christian was proba-
bly the first person, back in 1999, who realized the potential of aspects for

XII Preface

modeling and implementing business logic components and not just non-
functional requirements; he is also a person who proved that business logic
could be fully and completely described at the model level, as opposed to
being described in a programming language. Christian wrote the imple-
mentation chapters in Part I and Part II of this book.

Many other people have helped and supported me along the way.
William E. McCarthy and Guido Geerts are the inventors of the REA

ontology. Thanks to both for their patience in explaining the REA to me,
for their visits to Copenhagen, for the many phone call meetings, and their
valuable insight.

Thanks to Ralph Johnson for superb guidance; and for suggesting that I
restructure Part I into its current form, with REA described as the ex-
change and conversion patterns.

Lars Hammer was the architect behind the Jamaica Project (1999-2002)
at Navision, which proved that the architecture described in this book
really does work, and has been a valuable in-house supporter.

This book can be seen as the result of NEXT, a shared project between
the Microsoft Development Center Copenhagen and the IT University Co-
penhagen. A special thanks to Kasper Østerbye for keeping the project
running, and Ph.D. students Mette Jaquet and Anders Hessellund whose
thesis attempted to specify the semantics of REA, and significantly im-
proved our understanding of this modeling framework.

I’d also like to express my thanks to the participants of the Software Ar-
chitecture Group of University of Illinois at Urbana-Champaign, led by
Ralph Johnson, for discussing the manuscript for several weeks and mak-
ing their discussions available to me, the participants of the writers’ work-
shops at the conferences Viking PLoP 2002, 2004 and 2005 for their feed-
back on the pattern style, and to Daniel May, Bob Hanmer, and Linda
Rising for shepherding the patterns.

For the generous assistance in the technical aspects of this book, I would
like to acknowledge the exceptional team at Springer, and especially my
editor Ralf Gerstner.

I would be remiss if I did not mention my family for creating a friendly
and enjoyable environment in which it was a pleasure to write this book
and to think about REA.

Finally, thanks to the reviewers of this book, especially Paul Johannes-
son, Thomas Jensen, Krzysztof Czarnecki, Paul Adamczyk, Richard Kuo,
Geert Poels, and Bob Haugen for their comments on the manuscript in its
early stages, and to Allan Kelly, Janet Pehrson, and Keld Raaschou for
valuable feedback on specific parts of the book.

.

Table of Contents

Part I Structural Patterns ..1

1 Structural Patterns at Operational Level.......................................3
 1.1 What Is REA?..4
 1.2 Joe’s Pizzeria...7

 1.2.1 Sales Process...8
 1.2.2 Purchase Process ...11
 1.2.3 Labor Acquisition Process ..12
 1.2.4 Summary ...13
 1.2.5 The Illustrated Models Are Examples of a Pattern13

 1.3 REA Exchange Process Pattern...15
 1.4 REA Exchange Process In Detail ..19

 1.4.1 Economic Resources ...19
 1.4.2 Inflow and Outflow...21
 1.4.3 Economic Events ..23
 1.4.4 Exchange Duality..28
 1.4.5 Economic Agents ..33
 1.4.6 Provide and Receive ...35

 1.5 How Joe’s Pizzeria Obtains Pizza ...38
 1.5.1 Producing Pizza ..38
 1.5.2 Summary ...40
 1.5.3 The Pizza Production Process is an Example of
 a Pattern ..40

 1.6 REA Conversion Process Pattern ..41
 1.7 REA Conversion Processes in Detail45

 1.7.1 Economic Resources ...45
 1.7.2 Produce, Use and Consume ..47
 1.7.3 Economic Events ..50
 1.7.4 Conversion Duality ...54
 1.7.5 Economic Agents ..57
 1.7.6 Provide and Receive ...58

 1.8 Value Chain of Joe’s Pizzeria ...62
 1.9 REA Value Chain Pattern ...65

XIV Table of Contents

 1.10 REA Value Chain in Detail ... 72
 1.10.1 Resource Value Flows .. 72
 1.10.2 Economic Resources... 73
 1.10.3 Alternative Models of Business Processes.................. 81

2 Structural Patterns at Policy Level ... 83
 2.1 Group Pattern .. 84
 2.2 Type Pattern .. 88
 2.3 Difference Between Types and Groups................................... 92
 2.4 Commitment Pattern ... 93
 2.5 Contract Pattern... 101
 2.6 Schedule Pattern.. 108
 2.7 Policy Pattern .. 112
 2.8 Linkage Pattern ... 119
 2.9 Responsibility Pattern ... 122
 2.10 Custody Pattern.. 125

3 An REA-Based Example Application ... 129
 3.1 Representing the Metamodel... 130
 3.2 Component Model... 130
 3.3 The REA Model Component... 133
 3.4 The Domain Model Component.. 136
 3.5 The Database ... 137
 3.6 The Data Access Layer ... 138
 3.7 Joe’s Web .. 139
 3.8 The Fulfillment Page... 141
 3.9 The OLAP Cube.. 143
 3.10 Conclusions ... 146

Part II Behavioral Patterns.. 149

4 Cross-Cutting Concerns... 151
 4.1 Behavior May Not Be Localizable Into REA Entities 151
 4.2 Framework-Based Approach... 152
 4.3 There Is No Complete List of Behavioral Patterns 157

5 Patterns.. 159
 5.1 Identification Pattern ... 159
 5.2 Classification Pattern... 166
 5.3 Location Pattern .. 174
 5.4 Posting Pattern .. 180
 5.5 Account Pattern ... 186

Table of Contents XV

 5.6 Materialized Claim Pattern..194
 5.7 Reconciliation Pattern ...201
 5.8 Due Date Pattern ...207
 5.9 Description Pattern..213
 5.10 Notification Pattern..217
 5.11 Note Pattern ...222
 5.12 Value Pattern ...226
 5.13 Inventor’s Paradox Pattern ..231

6 An Aspect-Based Example Application......................................235
 6.1 Setting up the Application Model ...235
 6.2 Creating the Aspect Code..237
 6.3 The Identification Aspect ..238
 6.4 The Due Date Aspect ..238
 6.5 The Notification Aspect ..240
 6.6 The Description Aspect ...241
 6.7 Interchanging Events Between Aspects241
 6.8 Constructing the User Interface...242
 6.9 A Model-Based Framework ..245
 6.10 Storage ...251
 6.11 Storing Aspect Data in Separate Tables255

Part III Modeling Handbook ...259

7 Elementary Exchange Processes ...261
 7.1 Cash Sale ...262
 7.2 Product Return...265
 7.3 Loan and Rent (Individually Identifiable Resources)268
 7.4 Financial Loan (Nonindividually Identifiable Resources)271

8 Elementary Conversion Processes ..275
 8.1 Creating a New Product ..276
 8.2 Chain of Conversion Processes ...280
 8.3 Modifying a Product..283
 8.4 Creating and Consuming Services ..287

9 Value Chains with Exchange and Conversion Processes291
 9.1 Sale and Shipment ...292
 9.2 Resources Consumed During the Sales Process....................294
 9.3 People Management ..297
 9.4 Education...300
 9.5 Taxes ...303

XVI Table of Contents

 9.6 Marketing and Advertising.. 310
 9.7 Waste... 313
 9.8 Purchasing and Selling Services ... 316
 9.9 Transient Resources .. 319

10 Processes with Contracts ... 323
 10.1 Purchase Order .. 324
 10.2 Labor Acquisition .. 328
 10.3 Guarantee... 330
 10.4 Insurance.. 333
 10.5 Penalty for Violated Commitment... 335
 10.6 Schedule... 338
 10.7 Transport.. 341

Appendices.. 345

A. REA Ontology .. 347

B. Notes on Modeling.. 351
 B.1 There Is No Top-Level Business Process 351
 B.2 Premature Sequential Ordering Is Not Advisable.................. 351
 B.3 Bottom-Up Approach for Designing the System, and
 Top-Down Approach for Explaining It Are Advisable......... 352
 B.4 Trading Partner View and Independent View........................ 353
 B.5 Levels of Granularity ... 354
 B.6 Models, Metamodels and UML ... 355

C. Patterns and Pattern Form ... 359

References... 361

Index ... 365

Part I Structural Patterns

This part describes REA in detail, i.e. the patterns for a skeleton and fun-
damental structure of entities in a business software application. By using
the patterns in Part I, an application designer should end up with a struc-
ture that is consistent, and without omissions from the business perspec-
tive.

This part consists of two sections: structural patterns at operational
level, and structural patterns at policy level.

REA Structure at Policy Level
What Could, Should or Should not Happen

REA Structure at Operational Level
What Has Happened

Behavior

REA EXCHANGE
PROCESS

trade

REA CONVERSION
PROCESS
production

REA VALUE
CHAIN

business processes

TYPE
homogeneous

collections

GROUP
heterogenous

collections

COMMITMENT
future events

CONTRACT
commitments

in trade

POLICY
business rules

SCHEDULE
commitments in

production

LINKAGE
structure of
resources

RESPONSIBILITY
structure of

agents

CUSTODY
responsibility
for resources

Fundamental Skeleton

Extended Skeleton

Customizable Functionality

1 Structural Patterns at Operational Level

The first chapter in this section describes What is REA, and the chapter
Joe’s Pizzeria illustrates the fundamental interactions between the enter-
prise and its trading partners, that are examples of the REA EXCHANGE
PROCES pattern. The chapter Notes on Exchange Processes describes the
exchanges in more detail. The chapter How Joe’s Pizzeria Obtains Pizza
describes how the enterprise creates its products or services; these proc-
esses are examples of the REA CONVERSION PROCESS PATTERN. The
section Notes on Exchange Processes describes the conversions in more
detail. The pattern REA VALUE CHAIN explains how to combine the REA
business processes into the chain of business processes of the enterprise.

4 1 Structural Patterns at Operational Level

1.1 What Is REA?

There are several concepts that are present in almost all business software
applications. Understanding these concepts makes it much easier to design
business applications, to ensure that they do not violate the domain rules,
and to adapt the applications to changing requirements without the need to
change the overall architecture.

These concepts are known as REA (Resources, Events, Agents). Fig. 1
illustrates the most fundamental REA concepts, which are economic re-
source, economic agent, economic event, commitment, and contract.

stockflow
provide

receive
increment decrement

duality

fulfillment

reservation

reciprocity

receive

provide

party

clause

linkage responsiblity

Fig. 1. Fundamental REA concepts

Economic Resource is a thing that is scarce, and has utility for economic
agents, and is something users of business applications want to plan, moni-
tor, and control. Examples of economic resources are products and ser-
vices, money, raw materials, labor, tools, and services the enterprise uses.

Economic Agent is an individual or organization capable of having con-
trol over economic resources, and transferring or receiving the control to
or from other individuals or organizations. Examples of economic agents
are customers, vendors, employees, and enterprises. The enterprise is an
economic agent from whose perspective we create the REA model.

Economic Event represents either an increment or a decrement in the
value of economic resources that are under the control of the enterprise.
Some economic events occur instantaneously, such as sales of goods; some

1.1 What Is REA? 5

occur over time, such as rentals, labor acquisition, and provision and use of
services.

Commitment is a promise or obligation of economic agents to perform
an economic event in the future. For example, line items on a sales order
represent commitments to sell goods.

Contract is a collection of increment and decrement commitments and
terms. Under the conditions specified by the terms, a contract can create
additional commitments. Thus, the contract can specify what should hap-
pen if the commitments are not fulfilled. For example, a sales order is a
contract containing commitments to sell goods and to receive payments.
The terms of the sales order contract can specify penalties (additional
commitments) if the goods or payments have not been received as prom-
ised.

REA also specifies the domain rules assuring soundness and consistency
of business software applications from the business perspective. There are
several other approaches attempting to describe the fundamental modeling
entities, such as archetypes (Coad, Lefebvre, DeLuca. 1999) and pleo-
morphs (Arlow, Neustadt 2003), for the business domain, and many busi-
ness patterns on more detailed levels; our favorite books include (Fowler
1996), (Hay 1996), (Silverstone 1997), (Marshall 2000), and (Evans 2003).
The patterns and modeling entities described in these books can be ex-
pressed in terms of the REA concepts. These patterns are more specific, as
they focus on certain subdomains within the business domain. They pro-
vide for further concepts, but do not change the concepts defined in the
REA. Therefore, REA defines a ubiquitous language for business systems.

The fundamental idea of the REA model is

If an enterprise wants to increase the total value of resources under
its control, it usually has to decrease the value of some of its re-
sources.

An enterprise can increase or decrease the value of its resources either
by exchanges or by conversions.

Exchange is a process in which an enterprise receives economic re-
sources from other economic agents, and it gives resources to other eco-
nomic agents in return.
Conversion is a process in which an enterprise uses or consumes re-
sources in order to produce new or modify existing resources.

The data associated with exchanges and conversions are the primary
business data about the enterprise in REA software applications. Account-

6 1 Structural Patterns at Operational Level

ing artifacts such as debit, credit, journals, ledgers, receivables, and ac-
count balances are derived from the data describing the exchanges and
conversions. For example, the quantity on hand for an inventory item can
be calculated from the difference between the purchase and sale events, or
between the production and consumption events, for that inventory item.

For comparison, in most current business software applications, whose
paradigms are derived from double entry accounting, it is the opposite –
they focus on the accounting artifacts, and economic data is derived from
them. This, in some sense, puts the consequences before the cause and
makes the models more complicated.

The fact that REA operates on primary and raw economic data explains
why it offers a wider, more precise, and more up-to-date range of reports
than models based on the traditional double entry accounting system that
operates on derived accounting data.

REA was originally proposed as a generalized accounting model. It was
first published by William E. McCarthy of Michigan State University
(McCarthy 1982). McCarthy in his doctoral thesis at the University of
Massachusetts analyzed a large number of accounting transactions, and
identified their common features and formulated a general model describ-
ing and explaining the accounting transactions. Since then, the original
REA model has been extended by McCarthy and Guido Geerts to a
framework for enterprise information architectures and ontology for busi-
ness systems (Geerts, McCarthy 2000a, 2002). REA became the founda-
tion for several electronic interchange standards, such as ebXML and
Open-edi (an ISO standard), which influenced the extensions of the origi-
nal REA model into commitments and contracts.

Last but not least, an increasing number of business analysts have found
that the models they develop become better when they have REA in mind.

1.2 Joe’s Pizzeria 7

1.2 Joe’s Pizzeria

We will create an REA model for Joe’s Pizzeria

Joe makes revenue by selling pizza to his customers. Joe’s Pizzeria has
employees whose task is to sell pizzas, as well as to produce pizzas from
raw materials such as dough, tomatoes, cheese, pepperoni and other top-
pings. There are also other things necessary to produce pizza, such as the
oven where the pizza is baked, electricity consumed to heat the oven, vari-
ous kitchen equipment and many other things. Joe is interested in tracking
information about some of them; in REA, the things that Joe is interested
in planning, monitoring and controlling are called economic resources. Joe
has decided that the economic resources that will be included in the busi-
ness software application are the Pizza, Cash, Labor of the employees, and
Raw Materials and Ingredients for producing pizza.

Fig. 2. Trading partners of Joe’s Pizzeria

Trading partners of Joe’s Pizzeria are customers, vendors and employ-
ees. They are capable of controlling economic resources; therefore, in the

8 1 Structural Patterns at Operational Level

REA application model the Customer, Vendor, Employee, and Joe’s Pizze-
ria are economic agents, see Fig. 2.

Fig. 3. Trading processes of Joe’s Pizzeria

The main trading processes of Joe’s Pizzeria, see Fig. 3, are selling
pizza to the customers (the Sales process), purchasing raw materials from
the vendors (the Purchase process), and purchasing labor from the em-
ployees (the Labor Acquisition process). We will construct the REA
model for each process.

1.2.1 Sales Process

The process of selling pizza to the customers is essentially an exchange of
pizza for cash; Joe’s Pizzeria gives Pizza to the customer, and receives
Cash in return. For Joe’s Pizzeria, the Sales process represents an outflow
of Pizza and an inflow of Cash, see Fig. 4.

Fig. 4. Selling pizza is an exchange of pizza for cash

The REA model for the process of selling pizza is illustrated in Fig. 5.
Joe’s Pizzeria and the Customer are economic agents, and the Pizza and
Cash are economic resources. One economic event is the transfer of own-

1.2 Joe’s Pizzeria 9

ership of the Pizza from Joe’s Pizzeria to the Customer (we call this event
Sale); in this transaction Joe’s Pizzeria provides Pizza, and Customer re-
ceives it. Another economic event is the transfer of ownership of Cash
from the Customer to Joe’s Pizzeria (we call it Cash Receipt); in this
transaction the Customer provides Cash, and Joe’s Pizzeria receives it.

For Joe’s Pizzeria, the Sale event (the transfer of ownership of the Pizza
to the Customer) is a decrement event, because it decreases the value of
the resources under the control of Joe’s Pizzeria. The Cash Receipt is an
increment event, because it increases the value of the resources under the
control of Joe’s Pizzeria. The terms decrement and increment are relative
to the model viewpoint; they depend on the economic agent which is in the
focus of the model. If we modeled the same process from the perspective
of the Customer, the transfer of pizza would be an increment (would be
called Purchase) and the transfer of cash would be a decrement event
(would be called Payment or Cash Disbursement).

Fig. 5. The REA model for Joe’s Pizzeria sales process

The REA model of the sales process in Fig. 5 focuses on the core eco-
nomic phenomena, and therefore it covers many special cases. For exam-
ple, most customers pay when they purchase pizza, but some customers
may receive an invoice, and pay for all their purchases in a certain period
at once. If the case of Internet sales, customers must provide their credit
card information before the pizza is delivered, and Joe’s Pizzeria receives
money from the customer’s bank later. When the sale occurs in the restau-
rant, the customers pay after they get pizza, either using cash or a credit
card.

10 1 Structural Patterns at Operational Level

All these cases are covered by the model in Fig. 5; this is very useful if
we would like to create a robust skeleton of a software application.

Customers may order pizza over the Internet. In this case, a software
business application creates an electronic Sales Order, which specifies a
commitment of Joe’s Pizzeria to sell a specified Pizza to the Customer,
and a commitment of a Customer to pay for the Pizza a specified amount
of Cash.

The Sales Order, see Fig. 6, is an example of a contract between the
economic agents Joe’s Pizzeria and the Customer. The Sales Line and the
Payment Line are not economic events; they are commitments to perform
the economic events in well-defined future. The Sales Line is a commit-
ment to perform the event Sale, and the Payment Line is a commitment to
perform the event Cash Receipt in the future.

Fig. 6. The REA model for the sales process with sales order

The Sales Order often contains terms specifying what should happen if
the commitments are not fulfilled, such as when the payment arrives late,
or the customer is not satisfied with the pizza. The fact that a contract can
be represented as a computer model is important for automatic tracking of
the state of the contract at runtime, and also for computer-assisted evalua-
tion of complicated financial contracts.

1.2 Joe’s Pizzeria 11

1.2.2 Purchase Process

When Joe’s Pizzeria purchases tomatoes, cheese, pepperoni, flour and
other raw materials, it essentially exchanges the raw material for cash.
Vendor gives Raw Material to Joe’s Pizzeria, which gives it Cash in re-
turn. For Joe’s Pizzeria, the Purchase process represents an outflow of
Cash and an inflow of Raw Material, see Fig. 7.

Fig. 7. Purchasing raw material is an exchange of raw material for cash

The REA model for the process of purchasing raw material is illustrated
in Fig. 8.

Fig. 8. The REA model for the purchase process

The Vendor and Joe’s Pizzeria are economic agents, the Raw Material
and Cash are economic resources. The transfer of ownership of the Raw
Material from the Vendor to Joe’s Pizzeria is an increment economic
event (we call it Purchase), and the transfer of ownership of Cash from
Joe’s Pizzeria to the Vendor (we call it Cash Disbursement) is a decrement
economic event; the increment and decrement are from Joe’s Pizzeria per-
spective.

Similarly as for the REA model for sales, the REA model for purchases
covers many special cases. Some raw materials can be paid by check or
bank transfer; some can be made in different currencies. There can be sev-

12 1 Structural Patterns at Operational Level

eral purchases paid using a single payment, and a single purchase can be
paid in several installments. The model tracks the information about which
purchases correspond to which cash disbursements, but abstracts from
technical details and does not specify the order of these transactions.
Again, this is useful if the skeleton of a software application is based on
this model, because it does not have to be changed if some technical as-
pects of the purchase process change.

1.2.3 Labor Acquisition Process

Joe’s Pizzeria employees provide their work (they produce and sell pizzas
during specified periods of time) and receive their salary in return. Labor
acquisition is essentially an exchange of Labor (the worked hours) for
Cash. Employee sells his labor to Joe’s Pizzeria, which gives him Cash in
return. For Joe’s Pizzeria, the Labor Acquisition process represents an out-
flow of Cash and an inflow of Labor, see Fig. 9.

Fig. 9. Labor acquisition is an exchange of worked hours for cash

Fig. 10. The REA model for the labor acquisition process

The REA model for the labor acquisition process is illustrated in
Fig. 10. The Employee and Joe’s Pizzeria are economic agents; the Em-
ployee provides Labor and receives Cash, and Joe’s Pizzeria provides

1.2 Joe’s Pizzeria 13

Cash and receives Labor. Labor (the worked hours) and Cash are eco-
nomic resources. The Labor Acquisition is an economic event that occurs
over periods of time (during the employee’s working hours), while Cash
Disbursement is an instantaneous event that occurs once a week or month
when the Employee receives his paycheck.

The REA model in Fig. 10 can be applied to many forms of acquiring
labor; it can be applied for full employment, temporary work, consulting,
as well as for work acquired according to various other forms of contracts.

1.2.4 Summary

The REA model focuses on the core economic phenomena and abstracts
from technical and implementation details. This has several advantages.

Firstly, the REA model abstracts from the technical aspects of the trans-
fer of the resources. Cash can be transferred as bills and coins, as a check
or as a credit card transaction. Customers can pick pizza themselves, or
pizza can be delivered to their address. For all these cases we can apply the
same REA model, which does not have to be modified even if the techni-
cal infrastructure supporting the business changes.

Secondly, the REA model abstracts from the order in which the eco-
nomic events occur. Usually, pizza is paid at about the same time as it is
given to the customer, but sometimes it is paid for beforehand, and some-
times it can be paid by credit card and there is a significant delay between
the sale of pizza and the transfer of cash. If the business process was speci-
fied as a scenario consisting of a sequence of events, the business applica-
tion would support only the scenarios identified at design time. The REA
model allows the business application to flexibly record everything that ac-
tually happened. The actual order of events emerges at runtime, rather than
being specified at design time.

Thirdly, for each REA model apply certain rules: each increment must
be related to a decrement, each economic event must have a provider and
recipient agent, and each resource must be related to both increment and
decrement. Therefore, application designers can ask relevant questions
leading to the discovery of missing information in the user requirements,
and can construct the model even if the initial specification is incomplete.

1.2.5 The Illustrated Models Are Examples of a Pattern

The three illustrated models for the business processes Sales, Purchase and
Labor Acquisition have many common features. They all model the trans-

14 1 Structural Patterns at Operational Level

actions between Joe’s Pizzeria and its trading partners as exchanges of
economic resources.

These models can be generalized into a model at a higher level of ab-
straction, illustrated in the next chapter. The models for sale of pizza, pur-
chase of raw materials and labor acquisition are examples of the REA
EXCHANGE PROCESS PATTERN.

1.3 REA Exchange Process Pattern 15

1.3 REA Exchange Process Pattern

Trade is the voluntary exchange of goods, services, or money

Context

You are an application designer developing a business application. You are
trying to create an object model of a business application and struggling to
find the right structure for the model and the right relationships between
entities in the model. You know the user requirements; they can be in a
written document or non-written information obtained by an ongoing dia-
log with the users; but you know the requirements are incomplete. You
want to know the right questions to ask to better understand the application
domain. You also want the model to be consistent and robust enough for
future changes in user requirements.

Problem

How does one create a robust skeleton of an object-oriented model for in-
teractions between the enterprise and it trading partners? User require-
ments are not a sufficient source of information, because they are known to
be incomplete, often contradictory, and to change over time, and it is often
impossible to find what requirements are missing. Shortly, you would like
to create a business application that will satisfy even some of user re-
quirements that have not been communicated to you.

16 1 Structural Patterns at Operational Level

Forces1

The REA exchange process pattern resolves the following forces:

The modeled software application should provide information about
how the interactions between the enterprise and its trading partners
change the value of the economic resources of the enterprise. The appli-
cation should keep track of the increases and decreases of the value of
the resources that are under the control of the enterprise, and should re-
cord which resources were exchanged for which others.
Application designers want to concentrate on the fundamentals of the
users’ business, and separate those requirements which are likely to
change. The fundamentals are often so obvious to the users of business
applications that they do not communicate them, and they remain hid-
den until late stages of software development.
The model should be consistent with the business domain rules. Appli-
cation designers want to ensure that the model is consistent, complete,
and correct, with respect to the domain rules.
Application designers want to include business semantics into the enti-
ties in the application model. Semantics based only on the names of the
entities is not good enough because it relies on common knowledge, and
common knowledge is not available to software applications.

Solution

Model the interactions between the enterprise and its trading partners as
exchanges of economic resources.

Each exchange consists of at least one increment economic event that
increases the value of a resource of the enterprise by transferring rights to
the resource to or from other economic agents. Every increment event is
related to at least one decrement economic event that decreases the value
of a resource of the enterprise by transferring rights to the resource to or
from other economic agents. We call the relationship between the incre-
ment and decrement economic events exchange duality, or in short, ex-
change. The exchange duality is a many-to-many relationship, indicating
that in the application model there must be at least one decrement for each
increment, and vice versa. Therefore, the exchange duality in the applica-

1 In the pattern literature the term forces is used for the constraints that restrict

the solution of the problem, requirements, and properties that the solution
should have. Appendix C describes the pattern form in detail.

1.3 REA Exchange Process Pattern 17

tion model can be an n-ary relationship, that relates several increment and
decrement entities.

In order for an exchange process to add value, the overall increase in
value of the resources related to the increment events should be greater
than the overall decrease in value of the resources related to the decrement
events.

Each economic event is related to an economic resource, see Fig. 11.
The relationship between an increment and a resource is called inflow, the
relationship between a decrement and a resource outflow. In the applica-
tion model there must be exactly one economic resource for each eco-
nomic event, and at least one increment and one decrement for each eco-
nomic resource.

Each economic event is related to two economic agents. The economic
event in the exchange process transfers rights to the economic resource
from one agent to another. When the event occurs, the provider agent loses
rights to the resource, and the recipient agent receives the rights. In the ap-
plication model for each economic event there must be at least one pro-
vider and at least one recipient agent. For each agent, there can be zero or
more economic events.

Fig. 11. The REA exchange process

Note that the model in Fig. 11 determines the rules for constructing the
application model. The application model determines the structure of the
runtime instances.

The following domain rules apply for any application model describing
the REA exchange process.

18 1 Structural Patterns at Operational Level

Every increment economic event must be related by exchange dual-
ity to a decrement economic event, and vice versa.

Every increment economic event must be related by inflow relation-
ship to an economic resource.

Every decrement economic event must be related by outflow rela-
tionship to an economic resource.

Every economic event must be related by a provide relationship to
an economic agent, and by a receive relationships an economic
agent. At runtime, these two agents must represent entities with dif-
ferent economic interests.

Resulting Context

The domain rules in this pattern allow application designers to derive new
facts from the facts provided by the users, and to formulate questions lead-
ing to the discovery of new facts. Therefore, a business application can
meet most or all user needs, even if the user requirements and the design-
ers’ knowledge of the user needs are incomplete.

Note that at runtime, for some period of time, there might exist an in-
stance of an increment event that is not paired in exchange relationship
with a decrement event. This temporary imbalance results in a claim be-
tween economic agents. The claim can be materialized, for example as an
invoice. The concept of a claim is described in the chapter REA Exchange
Process in Detail, and the materialized claim is described as a pattern in
Part II of the book.

1.4 REA Exchange Process In Detail 19

1.4 REA Exchange Process In Detail

In this section we explain semantics of the resources, events, agents, in-
flow, outflow, exchange, provide, and receive, in the REA exchange proc-
ess.

The purpose of the REA exchange process is to receive or give up
rights associated with economic resources by receiving or giving up
rights to other resources.

1.4.1 Economic Resources

Economic resources are things that are scarce, and have utility for eco-
nomic agents, and users of business applications want to plan, monitor,
and control. This definition of a resource is common to both an exchange
and a conversion process2; however, the resources expose a different inter-
face to the exchange and conversion processes.

In the REA exchange process, a resource can be seen as a collection
of certain rights associated with it: ownership rights, usage rights,
copy rights.

Rights contribute to the resource value for an economic agent.

1.4.1.1 Rights Associated with the Resources

REA does not explicitly specify how to model the rights associated with
the resource. In this book, we follow the approach in which the inflow and
outflow relationships at the application model level determine the rights
transferred from one economic agent to another.

For example, Fig. 12 illustrates an REA application model for a Reader
of a Book (Fig. 15 models the same process from the perspective of Li-
brary). Economic resource Book is borrowed from Library. A reader can
identify what rights it has to the book by traversing the inflow and outflow
relationships related to the Book. In the model in Fig. 12 the Reader has
the right to read the Book, i.e., the Reader has the right to attach the Read
economic event to it. Precise specification of the “right to read” in the
REA framework, for example, whether it includes the right to borrow the

2 Please see the section REA Value Chain in Detail for discussion on economic

resources in general.

20 1 Structural Patterns at Operational Level

book for another reader, requires the concept of types, and can be ex-
plained using the POLICY pattern.

Fig. 12. Features and rights of the economic resource3

Note that there are alternative approaches to modeling the transfer of
rights than as instances of inflow and outflow. These approaches are out-
lined in the following section.

1.4.1.2 Alternative Approaches of Modeling the Rights

Researchers involved in modeling business systems using REA still dis-
cuss appropriate ways of modeling the rights. The other possible ap-
proaches to modeling rights are (Haugen 2005):

Rights are properties of economic resources.
Rights are components of economic resources, attached to the main re-
source to which they give rights.
Rights are properties of inflow and outflow relationships.
Rights are types of commitments (see the COMMITMENT PATTERN).
Rights are refinements of the custody relationship between economic
agents and economic resources.
Rights are defining characteristics of economic events.

3 Modeling conventions, and the correspondence between the model and

metamodel are outlined in Appendix B.

1.4 REA Exchange Process In Detail 21

All approaches have their advantages and disadvantages, and combina-
tions of these approaches may also be possible.

1.4.2 Inflow and Outflow

In the previous section we described resource as a portfolio of rights, and
economic events in exchange processes transfer some of them.

Inflow is a relationship that relates economic resource with an in-
crement economic event. The enterprise receives some rights to the
resource as a result of the related increment event.

For example, as a result of a purchase economic event, the enterprise
will receive ownership rights, and during a rental economic event, the en-
terprise will receive rights to use the premises for the period of the rental.

Outflow is a relationship that relates economic resource with a dec-
rement economic event. The enterprise loses some rights to the re-
source as a result of the related decrement event.

For example, after payment (an economic event), the enterprise will lose
ownership rights to money, and during rental, the owner will lose the
rights to use his premises for the period of the rental.

The inflow and outflow relationships and their cardinalities are illus-
trated in Fig. 13. The model illustrates an Apartment that can be purchased,
rented or sold.

At the level of the REA categories (which describes how application
models are constructed), the inflow and outflow are one-to-many (1 to
1..*) relationships; one economic event is related to one resource, and a re-
source can be related to one or more economic events. For example, as il-
lustrated in Fig. 13, an Apartment is related to one increment and two dec-
rement events. The enterprise receives ownership of Apartment (the
Purchase event), rents it (the Rental event) and terminates the ownership
(the Sale event). Rental is an economic event that lasts over an interval of
time; rights to use the apartment are transferred to the renter at the begin-
ning of the rental and returned at the end of the rental.

22 1 Structural Patterns at Operational Level

Fig. 13. Inflow and outflow relationships

In the REA application model (which describes the construction of run-
time entities), the inflow and outflow are one-to-many (1 to 0..*) relation-
ships; one economic event is related to one resource, and a resource can be
related to zero or more economic events. An actual Apartment can over
time be rented, purchased, and sold zero or more times by the same eco-
nomic agent. Each Rental, Purchase, and Sale event is related to exactly
one Apartment. If several Apartments are rented to the same renter at the
same time for the same period, this would be modeled as several economic
events that occur simultaneously.

1.4.2.1 Inflow and Outflow are Linked to Actual Resources

An economic event is always related to the (actual) resource, which re-
flects the fact that a real thing is purchased or sold; an economic event4 is
never related to the resource type or group (see the discussion on TYPE
and GROUP patterns for definitions of type and group). A car dealer al-
ways sells a physical car, and guest always occupies a physical room in a
hotel. If an engineering company sells know-how and blueprints of a car to
a car manufacturer, we would model these artifacts as resources (not re-
source types) in this transaction. If a person buys a season ticket, e.g. all
Barcelona games in 2005-2006, the economic resources are the actual seats
when the Barcelona games are played, and the economic events are the

4 A commitment for an economic event can be related to a type. See the discus-

sion on COMMITMENT pattern.

1.4 REA Exchange Process In Detail 23

person’s actual attendances. For objects that consist of elements without
identity, such as water, gasoline, electricity, or money, the resources (re-
source instances) are the volumes limited by the scope of the economic
events. The section on resource types gives examples of instances of these
kinds of resources.

Fig. 14. Economic event is always related to the actual resource

Nevertheless, software applications sometimes contain a relationship be-
tween economic event and resource type. For example, if an electricity
consumer is interested only in the total amount of delivered electricity, and
not in voltage, frequency and current at each moment in time, it is useful to
omit the electricity instance from the model, and relate the electricity sale
event and electricity resource type. Such a decision is a modeling compro-
mise, and the missing information is a trade-off for simplicity.

1.4.3 Economic Events

Economic events in the exchange processes represent the permanent or
temporary transfer of rights to an economic resource from one economic
agent to another. The transfer of the rights represents increment or decre-
ment of the value of the resources.

The purpose of an economic event in the REA exchange process is
to transfer some of the rights associated with the resource from one
economic agent to another.

An increment event increases the value of the related resource, and the
decrement event decreases the value. An increment event does not always
mean that the enterprise should receive rights; for example, waste is a re-

24 1 Structural Patterns at Operational Level

source with negative value, therefore, by transferring ownership of waste
to the recycle station the enterprise increases overall value of its resources.

In the process illustrated in Fig. 15 the Lend economic event represents
a time-limited transfer of rights to the economic resource Book from Li-
brary to the Reader and back. The economic agent Library provides some
rights related to a copy of a book to the Reader. Reader receives the right
to borrow a copy of the Book, but not, for example, the right to sell this
copy or to create another copy of the Book. Reader has also not received
the right to substantially change the physical shape of the book, for exam-
ple, by excessive wear and tear, even though some wear is expected.

Fig. 15. The event in the exchange process transfers rights associated with the re-
source

Lend is a decrement economic event in Library’s REA model, because it
restricts the Library’s rights to the Book during the Lend event. For exam-
ple, Library cannot lend the book to another Reader.

Fig. 16. Economic event in an exchange process

1.4 REA Exchange Process In Detail 25

The economic events address when economic agents had the rights to
the resources, and consequently when economic resources changed value.
If the economic resources can be located in space, the economic event also
determines where the economic resources changed their value.

The economic events in REA application models usually encapsulate
properties for Date and Time and Location in Space. As these properties
usually have specific behavior that differs from one application to another,
we describe them as behavioral patterns POSTING and LOCATION in the
Part II of this book. The Quantity property determines the quantity or
amount of the resources for which the rights are transferred. The Quantity
property of the events related to the resources that are individually identifi-
able is always one, as there is one economic event for every resource unit.
Note that whether a resource is individually identifiable is often a decision
of the users of a business application. This topic is discussed in the chapter
REA Value Chain in Detail.

Date and Time and Location in Space are related; if we specify one of
them, we might often determine the other, and vice versa. As a result, al-
though many economic events are determined by the time at which they
occurred, (for example, an employment event is often specified by its start
and end), many are also often determined by the resource’s location in
space. For example, economic agents can agree that the sale event (transfer
of ownership rights) occurs when goods are delivered to the customer; the
payment event occurs upon cash transfer between the bank accounts.
Typically, a contract between economic agents specifies when ownership
or other rights to a resource are transferred between them and how is it re-
lated to change of location.

1.4.3.1 Economic Events are Moments or Time Intervals

The economic events in exchange processes might occur instantaneously
or over an interval of time. For example, the sale of an apartment and its
payment occur instantaneously. The Sale event in Fig. 17 is a transfer of
ownership rights of the Apartment from the Seller to the Buyer. The
Apartment is owned by the Seller before the economic event Sale, and af-
ter Sale the Apartment is owned by the Buyer.

26 1 Structural Patterns at Operational Level

Fig. 17. Transfer of ownership can be an instantaneous event

The economic events that transfer rights other than ownership can occur
over a period of time, such as rental, loan, or lease; see Fig. 18. The Rental
event in this figure is a transfer of the right to use the Apartment from
Owner to Renter at the beginning of the Rental economic event. The
Renter has the right to use the premises for the duration of the Rental
event, and this right is returned to the Owner at the end of the Rental.

.

Fig. 18. Transfer of rights other than ownership is often a time interval

The sale of resources that cannot be individually identified, such as elec-
tricity, water, or other fluid materials, as well as most services occur over a
period of time. The graph in Fig. 19 illustrates that the amount of electric-
ity changed ownership from seller to buyer over a period of time.

The rate at which resources change rights is not constant. For example,
in the middle of the graph in Fig. 19, there is a flat period in which no elec-

1.4 REA Exchange Process In Detail 27

tricity has been sold. Likewise, labor acquisition is an economic event that
occurs over the period of employment, but labor is acquired only during
working hours and not, for example, during weekends.

Fig. 19. Transfer of ownership can be a time interval

If an economic event in an exchange process occurs instantaneously, we
can deduce that this economic event transfers ownership between eco-
nomic agents. The opposite rule does not apply; transfer of ownership can
be instantaneous, as illustrated in Fig. 17, or occur over an interval of time,
as illustrated in Fig. 19.

1.4.3.2 Economic Events Occur in the Past or Present

A business application can register only economic events that have already
occurred or are occurring in the present. Economic events can certainly be
planned or expected to occur in the future; the REA concept of commit-
ment describes the events that have not yet occurred. A business applica-
tion can also register commitments for future economic events, and the ful-
fillment relationship between commitment and economic event specifies
how good the prediction is. Commitments are described in the COM-
MITMENT PATTERN.

1.4.3.3 Increment Does Not Always Increase Value, and
Decrement Does not Always Decrease It

If the enterprise acquires the maintenance of equipment from a service
center, the acquisition is an increment economic event, because the value
of the equipment for the enterprise is usually higher after the maintenance
than before.

28 1 Structural Patterns at Operational Level

What if maintenance sometimes does not succeed, and the service center
damages the object to be maintained, and its value after the maintenance is
lower than before? If such a case has been specified by a contract (see the
CONTRACT PATTERN) between a service centre and the enterprise, the
REA model would contain a decrement event modeling the decrease of re-
source value, and would also contain an economic event for compensation.
If such a case has not been specified by a contract, then maintenance is still
an increment event, but the value of the resource is decreased. The eco-
nomic resources can change their value on their own, due to processes that
are not modeled.

Taking the previous example to the extreme, let us suppose that for the
car rental agent, renting a car to a celebrity increases the value of the car,
while renting it to anyone else decreases it. From the perspective of the car
rental agent, is rental an increment or a decrement economic event?

It depends on the usual business of the rental agent, and on what kinds
of changes in the resource value users want to plan, monitor, and control.
If the usual business is to rent cars to ordinary people, rental would be a
decrement economic event. If the car occasionally increases its value dur-
ing rental, the application model will be the same, but this particular in-
stance of the decrement event will increase the value of the car. If the
rental agent’s usual business is to rent cars to both celebrities and others,
the model must contain two economic events: “ordinary rental” and “ce-
lebrity rental.” As “celebrity rental” is an increment, it must be paired via a
duality relationship to some decrement event. Therefore, the model must
also specify what resources are used or consumed in relation with this “ce-
lebrity rental” event.

1.4.4 Exchange Duality

The exchange duality binds increment and decrement economic events to-
gether into an REA exchange process.

The purpose of the exchange duality is to keep track of which re-
sources were exchanged for which others.

Exchange dualities represents in the model why economic events occur.
For example, the pizzeria receives cash from the customer because the
customer gets his pizza. Conversely, the pizzeria gives the pizza to the cus-
tomer because the customer gives him cash. By asking (and answering)
“why do the economic events happen,” the REA domain rules help create a
complete and consistent business model. However, answers to some ques-
tions, such as “why do we pay taxes,” is not always obvious. Examples of

1.4 REA Exchange Process In Detail 29

such models, and how they are answered by the exchange dualities, are il-
lustrated in the Modeling Handbook.

In the REA application model of an exchange process, every incre-
ment economic event must be related by an exchange duality to a
decrement economic event, and vice versa.

An example of an exchange duality is illustrated in Fig. 20.

Fig. 20. The exchange duality

The exchange duality at the REA category level (which describes how
to construct the application model) is a many-to-many (1..* to 1..*) rela-
tionship, see Fig. 20. For example, a customer can pay (a Cash Receipt
event) for the Sale of an item and for receiving Delivery Service. The ex-
change duality must relate at least one increment event entity and one dec-
rement event entity.

The exchange duality in the REA application model (which describes
constraints of the runtime entities) is a many-to-many (0..* to 0..*) rela-
tionship. At runtime, several Sale events can be paid for by one check (an
actual Cash Receipt event), and one Sale can be paid in several install-
ments (several actual Cash Receipt events). However, there is no “must”
here; actual Sale can remain unpaid, usually for a period of time. Some-
times, the Sale is never paid.

An application developer can restrict the cardinalities in the application
model; for example, if there is always a single payment for a single sale,
the cardinalities can be restricted to 0..1. If it then happens that the cus-
tomer pays for a sale with two payments, the software application will not
support it. Sometimes this might be a reasonable trade-off for simplicity.

30 1 Structural Patterns at Operational Level

1.4.4.1 The Value of Exchanged Resources

Each resource that is subject to exchange has a different value for the eco-
nomic agents participating in the exchange. For rational economic agents,
an economic exchange can occur only if both economic agents perceive
the value of the received economic resources higher than the value of the
given resources; otherwise, they will not exchange them.

For example, see Fig. 21; the Sale is a transfer of ownership of Pizza
from Joe’s Pizzeria to Addy, and the Payment Receipt is a transfer of own-
ership of Cash from Addy to Joe’s Pizzeria. If Addy buys a Pizza at Joe’s
Pizzeria for $10, for Addy the Pizza has a value higher than $10; for Joe’s
Pizzeria $10 has a value higher than the Pizza. If Addy did not think that
the Pizza is worth $10 or more, and if Joe’s Pizzeria did not think that for
$10 it is worth selling the Pizza, the economic exchange would not occur.
I.e., neither the economic event Sale nor the economic event Payment Re-
ceipt would occur.

Fig. 21. Resource has different value for each agent.

How does Joe’s Pizzeria evaluate how much Pizza is worth selling for?
Joe’s Pizzeria usually wants to sell the Pizza for a price higher than its cost
price. If Addy is an end customer (the one that consumes Pizza), his
evaluation of how much the Pizza is worth is often much less objective.
Addy’s immediate needs, the prices of Joe’s Pizzeria competitors, and a
discount of $3 from original price $13 to the new price of $10 may make
Addy believe that the Pizza is worth more than $10. It is also likely that the

1.4 REA Exchange Process In Detail 31

first pizza Addy buys has for him a higher value than a second pizza of the
same type, which explains why Addy in this hypothetical example buys
only one unit.

The purpose of the exchange duality is not to determine whether the
values of the related increments and decrements match (this is the purpose
of behavioral patterns). The only thing we can deduce from an exchange
duality in the REA model is that, for each participating agent, the overall
value of all increments is higher than the overall value of all decrements.

Users of business applications usually require more sophisticated func-
tionality of the exchange duality. The RECONCILIATION PATTERN de-
scribed in Part II, Behavioral Patterns, can be used to identify which in-
stances of increment events correspond to which instances of decrement
events, and vice versa, for example to identify which sale events corre-
spond to specific cash receipt events. The MATERIALIZED CLAIM
PATTERN can be used to determine the unbalanced value between the in-
crement and decrement events.

1.4.4.2 Time Order of Increments and Decrements

There is no logical constraint on the order of time in which the resources
will be exchanged. There can also be a significant delay between the oc-
currence of the increment and decrement economic events.

Decrement
Event

exchange Increment
Event

resource resource

time

decrement event (e.g. payment)

increment event (e.g. car rental)

No general rules about
which of these exchanges
occur first

Fig. 22. Increment and decrement events occur independently of each other

For example, a customer can pay before he can rent a car (see Fig. 22),
and vice versa. It is also quite common that one economic event occurs
during another one, for example, in the case of renting an apartment
against monthly payments. In such a case, one rental economic event
would be related through an exchange duality to several payment eco-

32 1 Structural Patterns at Operational Level

nomic events, some of which might occur before, some during, and some
after the rental.

If the economic agents would like to specify the desired time order of
the future economic events, they can specify it by commitments that are
part of the contract; see the discussion on CONTRACT PATTERN for de-
tails.

1.4.4.3 Claim

Increment and decrement economic events in exchange processes usually
do not occur simultaneously. Whenever an economic event occurs without
the occurrence of all corresponding dual economic events, there exists a
claim between economic agents related to these economic events. A claim
is illustrated in Fig. 23.

If the values of the increment and decrement economic events are com-
parable, the Value of the claim can be obtained as the difference between
the values of the increment and decrement economic events. For example,
if the sale event specifies the price of the sold product, and cash is received
in the same currency, the value of the claim is simply the difference be-
tween these two monetary values. This example is illustrated in Fig. 23.

Fig. 23. Claim

However, the values of the increment and decrement event might not be
directly comparable. For example, the sale events might be linked to actual
products (there is one event per product unit), and the cash receipt event
represent the amount in a specific currency. If such a sale is partially paid
for, the claim between the sale and cash receipt events contains two kinds
of values: the quantities of the sold products and the value of the partial
payment.

In cases where the value of the increment cannot automatically be com-
pared with the value of the decrement, additional information can be re-

1.4 REA Exchange Process In Detail 33

ceived from commitments (see the discussion on COMMITMENT
PATTERN). This example is illustrated in Fig. 24.

Fig. 24. Claim in a model with commitments

For example, the economic agents agree to sell 4 units of Pizza for $10;
the value of the decrement commitment is 4 units, and the value of the in-
crement commitment is $10. If the enterprise sells 3 units of Pizza and re-
ceives $8, the values of the claim are 1 unit of Pizza and $2.

A claim is often materialized; i.e., users of business applications print a
document that states the value of the claim to a given date, and that often
contains additional information. Invoice is an example of a materialized
claim. As the methods to materialize the claim differ from one business
application to another (due to legislation in various countries and company
standards), we describe the MATERIALIZED CLAIM as a behavioral pat-
tern.

1.4.5 Economic Agents

Economic agents are the providers and recipients of the rights associated
with economic resources.

34 1 Structural Patterns at Operational Level

Economic agents in exchange processes are individuals or organiza-
tions capable of holding the rights associated with economic re-
sources, and of transferring or receiving these rights to or from other
individuals or organizations.

Examples of economic agents are enterprise, customer, vendor, and em-
ployee (in the labor acquisition process).

1.4.5.1 Contact Person

Sometimes, it is useful if the application model contains information about
a Contact Person, who is responsible for carrying out the economic event
for the trading partner. In these cases we assume that the trading partner
(such as Vendor in Fig. 25) delegated adequate responsibility toward the
contact person by the economic event Representation Service Acquire-
ment. As the enterprise has very little information about this delegation,
other than the fact that it exists, in many business software applications the
contact person is implemented as a property of the trading partner. This so-
lution is simple, but the full solution from Fig. 25 enables us to record
some properties of the responsibility delegation event, such as time period,
as well as to associate several contact persons with a particular trading
partner and economic event type.

The model Fig. 25 also illustrates, that sometimes it is useful to include
a part of business partner’s REA model in a solution, although the enter-
prise has limited information about it.

Fig. 25. Vendor’s contact person

1.4 REA Exchange Process In Detail 35

1.4.6 Provide and Receive

Provide and receive are relationships between economic agents and eco-
nomic events. Provide and receive relationships answer the question about
between whom rights are transferred, and, consequently, who has rights to
a resource at a given time.

Fig. 26. Provide and receive relationships

A provide relationship in an exchange process determines the eco-
nomic agent who loses rights to the economic resource as a result of
the economic event.

A receive relationship in an exchange process determines the eco-
nomic agent who receives rights to the economic resource as a result
of the economic event.

During an economic event, rights to an economic resource are trans-
ferred from one economic agent to another. Therefore, there are exactly
two economic agents related to each economic event. In order to create a
complete model for the enterprise, we must specify for each economic
event which agent receives and which agent loses rights to the resource.
The following REA axiom specifies what the REA application models
should support.

In the REA application model, each economic event must be related
by a provide relationship to an economic agent, and by a receive re-
lationship an economic agent. At runtime, these two agents must
represent people or organizations with different economic interests.

In the trading partner view (see Appendix B), one of the agents is always
the enterprise, and the other agent is the economic agent to whom the en-

36 1 Structural Patterns at Operational Level

terprise transfers or from whom it receives some rights to economic re-
sources.

Fig. 27. Joe’s Pizzeria sells pizza to Addy and receives payment from Library

In most cases we illustrate so far, the increment economic event has the
same providing and receiving agents as the decrement economic events re-
lated to it by the exchange duality. In the Sales process of Joe’s Pizzeria,
the Customer and Joe’s Pizzeria are related to both the increment and dec-
rement economic events. However, actual agent participating in the incre-
ment and decrement events can be different. In the example illustrated in
Fig. 27; Joe’s Pizzeria sells Pizza to Addy, and receives payment from Li-
brary; the Sale event has different participating agents than the Cash Re-
ceipt event.

This exchange process must still add value for all participating agents. Is
it worth it for Addy to get Pizza paid by Library? Well, if it would not be
the case, the Addy would not receive Pizza, Joe’s Pizzeria would not sell
it, or Library would not pay for it.

1.5 How Joe’s Pizzeria Obtains Pizza 37

1.5 How Joe’s Pizzeria Obtains Pizza

The REA EXCHANGE PROCESS pattern does not apply, because Joe’s
Pizzeria does not obtain pizzas from its trading partners

1.5.1 Producing Pizza

Joe’s Pizzeria produces pizza from Raw Materials such as dough, pepper-
oni, tomatoes and cheese, by using an Oven and by consuming Labor. The
process of producing pizza is essentially a conversion (transformation) of
the Raw Material, Labor (the worked hours) and the Oven (the time when
the oven has been used) into a Pizza, see Fig. 28. The Raw Materials be-
come part of Pizza, they are consumed during production. Employee’s La-
bor is also consumed; the time when the employee has worked on pizzas is
gone when the pizza is finished, and is not available anymore. On the other
hand, the Oven can be used again, although it might need some cleaning
and maintenance after a Pizza has been baked.

In principle, there are also other resources required to produce pizza,
such as the kitchen in the building in which Joe’s Pizzeria is located, heat-
ing of the building, and maintenance of the oven. Joe has decided he is not
interested in tracking how they are transformed into each Pizza. Therefore
we do not model them as economic resources in this process.

Fig. 28. The pizza production process

38 1 Structural Patterns at Operational Level

The REA model for pizza production is illustrated in Fig. 29. The Mate-
rial Issue, Labor Consumption, and Oven Use are decrements of resources,
because they decrease the value of the Raw Material, Labor and Oven. The
Pizza Production is an increment event, because it creates a new resource
with a positive value.

«receive»
«receive»

«receive»

«resource»
Raw Material

«decrement»
Material Issue

«increment»
Pizza

Production

«resource»
Pizza

«produce»

«decrement»
Labor

Consumption

«resource»
Labor

«economic agent»
Supervisor

«economic agent»
Waiter

«provide»

«receive»

«economic agent»
Cook

«provide»

«decrement»
Oven Use

«conversion»

«resource»
Oven

«provide»
«provide»

«consume»

«consume»

«use»

Fig. 29. The REA model for the pizza production

The economic resources Raw Material, Employee Labor and Oven are
under the control of the employees Supervisor, Cook and Waiter. The em-
ployees physically control the resources on behalf of Joe’s Pizzeria, but
they do not own them, neither do they have any legal rights to these re-
sources; the model in Fig. 29 illustrates that the economic agent Supervisor
issues the Raw Material to the agent Cook, who bakes a Pizza and passes it
to the Waiter. The Supervisor also provides Oven to the Cook to bake a
Pizza. To explain who controls Labor requires deeper analysis (see the
section on Labor in the Modeling Handbook): the Supervisor controls
Cook’s Labor, he assigns a task to the Cook; the Cook consequently takes
of the control of his Labor and consumes it to produce a Pizza.

1.5.2 Summary

The REA model focuses on the core economic phenomena and abstracts
from technical aspects of the conversion. This has several advantages.

1.5 How Joe’s Pizzeria Obtains Pizza 39

The model answers the question as to which economic resources have
been used, consumed and produced during the process. The economic
events provide the information on when, where and how the changes of the
resources occurred, and the economic agents provide the information on
who controlled the economic resources during these changes. This is the
information the business decision makers need in order to plan, monitor
and control the economic resources.

The REA model does not imply any restrictions on the time order in
which the economic events occur. If the users of a business application
wish to specify the desired order of events, the model can be extended us-
ing commitments (described in the SCHEDULE PATTERN) to specify
when the events should occur. However, the model can still record what
actually happened, and thus determine the difference between the schedule
and the actual production.

1.5.3 The Pizza Production Process is an Example of
a Pattern

In addition to producing pizza, Joe’s Pizzeria performs additional activities
in order to keep the company running. Cleaning of the restaurant and
maintenance of the equipment are the examples. If Joe schedules the pizza
production in order to purchase the right amount of raw materials, or if he
has an accountant who keeps his financial books, the planner’s and ac-
countant’s labor are transformed into the services that, as their end result,
make Joe’s Pizzeria a better company. The cleaning, maintenance, plan-
ning, accounting are essentially conversions of labor and tools into other
economic resources.

The pizza production, and the abovementioned processes are examples
of a pattern, the REA CONVERSION PROCESS.

40 1 Structural Patterns at Operational Level

1.6 REA Conversion Process Pattern

Photo by Ulrik de Wachter

Conversion is a physical, structural, or design change or transformation
from one state or condition to another

Context

You are an application designer developing a business application. Among
the business processes of the enterprise, there usually are one or more
processes that create new products or services, or add value to the existing
ones. These processes might be specified by the users of a business appli-
cation, but you know the user requirements are incomplete. You want to
know the right questions to ask to better understand the application do-
main. You also want the model to be consistent, and robust against future
changes in user requirements.

Problem

How does one create a robust skeleton of an object-oriented model for a
business process that creates new products or services, or adds value to the
existing ones? User requirements are not a sufficient source of informa-
tion, because they are known to be incomplete, often contradictory, and to
change over time, and it is often impossible to find out what requirements
are missing. In short, you would like to create a business application that
will satisfy even some of the user requirements that have not been com-
municated to you.

1.6 REA Conversion Process Pattern 41

Forces

The solution to this problem is influenced by four forces.

The model should provide information about how the process of creat-
ing and modifying resources influences their value, and when the value
has been changed.
The model should provide information about who was responsible for
the resources and when.
The model should capture the fundamentals of the users’ business, and
filter out those user requirements that are likely to change.
The model should be consistent, complete, and correct with respect to
the business domain rules.

Solution

Model the process that creates new products or services or adds value to
the existing ones as a conversion of some economic resources to others.
During the conversion, the enterprise uses or consumes economic re-
sources in order to produce the resources of the same or another kind.

Each conversion consists of at least one increment economic event that
increases the value of the resource by modifying its features, and at least
one decrement economic event that decreases the value of a resource by
modifying its features. The increments and decrements in the conversion
processes typically occur over a period of time.

Each increment event is related to exactly one economic resource by a
relationship called produce. The produce relationship means that the eco-
nomic event creates a new economic resource or modifies some features of
an existing resource. Each decrement event is related to exactly one eco-
nomic resource either by a use or by a consume relationship. The consume
relationship means that the economic resource does not exist after the dec-
rement event (the resource is consumed). The use relationship means that
the economic resource still exists after the decrement event, but some of its
features have been modified.

In order to keep track of which resources have been used or consumed
in order to produce others, the increment and decrement economic events
are related by the conversion duality relationship, or in short, conversion.
The conversion duality is an n-ary relationship; in the application model
there can be many increment and many decrement events related by a sin-
gle conversion duality.

42 1 Structural Patterns at Operational Level

 Each economic event is related to two economic agents. The economic
event in the conversion process transfers the control over the economic re-
source from one agent to another. Each event is related to exactly one eco-
nomic agent by a provide relationship, and to exactly one economic agent
by a receive relationship, see Fig. 30. The transfer of control can occur at
the beginning, at the end or during the economic event. Each agent can be
related to zero or more economic events.

Fig. 30. REA conversion process

In order for a conversion process to add value, the overall increase in
value of the resources related to the increment events should be greater
than the overall decrease of value related to the decrement events, over the
period reflecting the entrepreneurial goals of the enterprise.

The following domain rules apply for any REA application model de-
scribing the conversion process.

Each increment economic event must be related by a conversion du-
ality relationship to a decrement economic event and vice versa.

Each increment event must be related by a produce relationship to
an economic resource.

Each decrement event must be related either by a use or by a con-
sume relationship to an economic resource.

1.6 REA Conversion Process Pattern 43

Each economic event must be related by both provide and receive
relationships to an economic agent.

Resulting Context

The domain rules in this pattern allow application designers to derive and
discover new facts from the facts provided by the users of a business ap-
plication. Therefore, a business application can meet most or all funda-
mental user needs, even if the user requirements and the designer’s knowl-
edge of users’ needs are incomplete.

Note that at runtime, for some period of time, there might exist a decre-
ment event that is not paired in conversion duality with an increment
event. For example, the oven must be turned on good time before the bak-
ing of pizza can start.

44 1 Structural Patterns at Operational Level

1.7 REA Conversion Processes in Detail

In this chapter we explain the semantics of the resources, events, agents,
use, consume, produce, conversion duality, provide, and receive, in the
REA conversion process.

The purpose of the REA conversion process is to create new eco-
nomic resources or to change features of existing resources by using
or consuming resources of the same or another kind. Economic
events in the conversion processes can change the values of the fea-
tures, as well as add and remove features to and from the resources.

1.7.1 Economic Resources

Economic resources are things that are scarce, and have utility for eco-
nomic agents, and users of business applications want to plan, monitor,
and control. This definition of a resource is common to both an exchange
and a conversion process5; however, the resources expose a different inter-
face to the exchange and conversion processes.

In the REA conversion process, a resource can be seen as a collec-
tion of certain features associated with it.

Features are properties, characteristics, capabilities or states of a re-
source that establish the utility of the resource for an economic agent:
pizza has a certain weight, size, packaging, taste, vitamins and minerals
content, is delivered on time, is freshly baked, and is known from TV.
These features contribute to the resource value.

REA does not explicitly specify how to model the features of the re-
source. Some features can be modeled as properties of the resource, such
as the weight of a pizza, some as relationships to other REA entities, such
as the freshness of a pizza determined by the end of the Pizza Production
event. In Part II of this book we model the features of the resources as
modules of functionality called aspects. In the REA application models,
the names of the produce and use relationships can indicate the features of
the resource expected to be modified by the related economic event.

Fig. 31 illustrates an example of the resource Pizza, created during eco-
nomic event Baking (i.e. this event changes the Existence feature of the

5 Please see the section REA Value Chain in Detail for discussion on economic

resources in general.

1.7 REA Conversion Processes in Detail 45

Pizza). The increment event Packing changes the Packaging feature of the
Pizza. The decrement event Issue for Packing temporarily (i.e. during the
duration of this event) changes the Availability feature, e.g. when issued
for packing, a Pizza cannot be used for other purposes. The decrement
economic events for usage and consumption of the resources needed to
bake the pizza are omitted in the diagram for simplicity.

Fig. 31. The conversion process changes features of the resource

In the REA software application, it is necessary to store the features on
the resource entity, while the rights an economic agent has to the resource
are determined by relationships to the economic events. The main reason is
that while rights can be transferred only by economic events, resource fea-
tures can change on their own, as a result of the processes that are not part
of the application model.

Features can change on their own, not only as a result of economic
events in the application model. The reason of this fact is that the applica-
tion model does not need to contain all conversion processes that might af-
fect the features of the resource. If the features of the resource change on
their own, it usually means they have been changed by some conversion
process, which the application designers have not modeled. This is natural;
model is not an exact copy of the world, but contains only the information
relevant for the model. Therefore, features, and consequently also values

46 1 Structural Patterns at Operational Level

of resources can change as a result of the processes that are not part of the
application model.

Existence is one of the features of the resource; the only feature that the
resource must have. This seems obvious for real-world objects. However,
software applications do not contain real-world objects; they contain in-
formation about real-world objects, therefore, there is often need to keep
information about the resources that do not exist, that have been, for ex-
ample, consumed or destroyed. The fact that a resource ceased to exist
does not mean we delete a record of this resource from a database, but just
note its non existence. Existence has obviously an essential impact on the
value of the resource.

If a resource receives new features, and loses some existing features, the
consequence might be that it changes its type. The TYPE PATTERN de-
scribes this concept in detail.

1.7.2 Produce, Use and Consume

In the previous section we described resource as a portfolio of features,
and economic events change some of them. The Produce, Use and Con-
sume relationships between the resource and the economic event repre-
sents the features of the resource that are intended to be changed by the
economic event.

Produce is a relationship that relates economic resource with an in-
crement economic event. The enterprise intends to increase the
value of the resource as a result of the related increment event.

Produce means both creation of the resource, such as baking a pizza
from raw materials, and improvements to the resource, such as packing a
pizza. Maintenance and transport are other examples of the inflow eco-
nomic event with a produce relationship.

Consume is a relationship between an economic resource and a dec-
rement economic event. After a decrement economic event, the re-
source is entirely used up and does not exist after the event ends.

For example, the flour and water are consumed during the pizza produc-
tion process; see Fig. 32.

Use is a relationship between an economic resource and a decrement
economic event. After the decrement economic event, the resource
still exists, and its value may be unaffected.

1.7 REA Conversion Processes in Detail 47

For example, an oven still exists after the pizza production process in
Fig. 32.

The use relationship does not specify anything about the value or the
economic resource after the related decrement event. The economic event
is a decrement because the value of the resource for the enterprise becomes
smaller during the event. For example, the economic event might some-
how restrict the utilization of the resource: the oven used for a pizza pro-
duction in Fig. 32 may not at the same time be used for other purposes.
However, after the event, the value can be the same as before; other typical
example is playing a CD in a CD player. In other cases, the value of the re-
source is smaller after the decrement event, and after a certain number of
decrement events the value of the resource can become zero or even nega-
tive; after many uses, the enterprise might decide to transfer the oven own-
ership to the recycle station.

The Pizza Production process illustrated in Fig. 32 is an example of a
conversion process with produce, use and consume relationships.

At the REA category level (which describes how application models are
constructed), the produce, use and consume are one-to-many (1 to 1..*) re-
lationships. For example, as illustrated in Fig. 32, the enterprise consumes
the resources Flour and Water, uses the resource Oven, and produces the
resource Pizza, which is then transported to the Customer using the re-
source Vehicle. All economic events last over an interval of time.

In the REA application model (which describes the construction of run-
time entities), the consume is a one-to-one (1 to 0..1) relationship; one dec-
rement event is related to one resource, and a resource can be related to
zero or one decrement event. An actual volume of Flour and Water can be
added at most once (then they do not exist), each Flour Addition and Wa-
ter and Flour Mixing is related to a specific volume of Flour and Water.

The use is a one-to-many (1 to 0..*) relationship; one decrement is re-
lated to one resource, and a resource can be related to zero or more decre-
ments. An actual Oven can over time be used zero or more times, and each
Oven Use is related to exactly one Oven.

The produce relationship which creates a resource is a one-to-one (1 to
0..1) relationship; one increment event is related to one resource, and a re-
source can be related to zero or one increment event. An actual Pizza can
be created at most once, and each Pizza production produces exactly one
Pizza.

The produce relationship which modifies an existing resource is a
many-to-many (1..* to 0..*) relationship; one increment event is related to
one or more resources, and a resource can be related to zero or more in-
crements. For example, an actual Pizza can be Transported zero or more
times, and each Transport economic event is related to one or more Pizzas.

48 1 Structural Patterns at Operational Level

REA Categories

REA Application Model

«resource» «decrement»

«increment»

«resource»

1

0..1

«produce»
existence

«decrement»
«resource»

0..*

0..*
0..*

«decrement» 0..*«resource»

1 0..1

«consume»
existence

1 0..1

«consume»
existence

1 0..*

«use»
state of

being used

1..*1
consume

1 1..*use

1..* 1..*

conversion

1..* 1

produce
{or}

«decrement»1

0..1

«consume»
existence

0..* «conversion»

«decrement»
«increment»

1

0..*

«use»
state of being transported

1

0..*

«produce»
location

«decrement»«resource»

1 0..*

«use»
wear out

0..*

0..*

0..*

«conversion»

Fig. 32. Produce, use and consume relationships

This example also illustrates that the users’ viewpoint determines what
the economic resources are. If users are also interested in how making
Pizza affects resources such as ingredients, tools, and kitchen, these re-
sources must be included in the model. This process also produces waste;
if the users are interested in modeling the produced waste, the waste
should also be included in the model.

1.7.3 Economic Events

Economic events in the conversion processes represent changes to the fea-
tures of the resources, and the transfer of control of an economic resource
from one economic agent to another. The changes to the features represent
increments or decrements of the value of the resources.

1.7 REA Conversion Processes in Detail 49

The purpose of an economic event in the conversion process is to
create or consume a resource, or to change some of the features of
an existing resource.

An increment event increases value of the related resource, but it does
not mean that every actual event must increase the value; the increment
events increase the overall value of the resources over the period reflecting
the entrepreneurial goals of the enterprise. The same applies for the dec-
rement events.

The economic events address when the resource features have been
changed, when economic resources changed value, and when economic
agents had the resources under their control. If the economic resources can
be located in space, the economic event also determines where the eco-
nomic resources changed their value.

The economic events in the conversion processes do not transfer rights
to the resources between economic agents. If a resource has been created
in the conversion process, the enterprise has ownership rights to this re-
source by default. If a resource has been consumed, enterprise loses the
ownership and no other agent can receive rights to the resource that does
not exist.

Fig. 33. Economic event in a conversion process

The economic events in REA conversion processes usually occur over a
period of time. The properties for Date and Time and Location in Space
typically have behavior that differs from one application to another, we de-
scribe them as behavioral patterns POSTING and LOCATION in the Part II
of this book. The Quantity property determines the quantity or amount of
the used, consumed or produced resources. The Quantity property of the
events related to the resources that are individually identifiable is always
one, as there is one economic event for every used, produced or consumed
resource unit. Whether the resources are individually identifiable is often a
decision of the users of a business application. For example, if Joe does not

50 1 Structural Patterns at Operational Level

want to keep track of each individual Pizza, the Quantity property of the
Pizza Production event in Fig. 33 would be a natural number different than
1, and the resource related to this event would represent an identifiable (by
Joe) set of pizzas, such as the pizzas produced during a period of time.
Please see also the discussion in the chapter REA Value Chain in Detail.

1.7.3.1 Economic Events are Time Intervals

The economic events in conversion processes usually occur over an inter-
val of time. For example, in Fig. 34, the On Vehicle is a decrement event
representing the time interval when an Item is on a truck, and the Trans-
port event the time interval when the Item is actually changing its location.

Fig. 34. Events are usually time intervals

As economic events in conversion processes usually occur over a period
of time, it is useful to specify when exactly the participating economic
agents transfer control over the resource. The answer is different for re-
sources that can be individually identified (such as cars) and resources that
cannot (such as fuel).

Transfer of control over resources with individually unidentifiable ele-
ments, but whose identity is determined by their quantities, such as fluid
resources and some services, occurs continuously during their use, produce
and consume economic events; see Fig. 35. For example, production or
consumption of electricity occurs continuously, and the transfer of control
over electricity from the distributor to the customer is continuous.

1.7 REA Conversion Processes in Detail 51

Fig. 35. Transfer of control over resources that cannot be individually identified

From the model in Fig. 35 we can determine that the provider economic
agent controls the resource before the economic event, and that the recipi-
ent agent controls the resources after the economic event. During the eco-
nomic events, the provider agents control some amount of the resource and
the recipient agent some other amount.

Fig. 36. Transfer of control occurs at the beginning of the consumption of an indi-
vidually identifiable resource

For individually identifiable resources the answer is more specific, and
depends on whether the relationship is use, consume, or produce.

52 1 Structural Patterns at Operational Level

The provider agent transfers control to the recipient agent at the begin-
ning of an economic event that consumes resources; see Fig. 36. For ex-
ample, a warehouse clerk gives control to the production worker over raw
material that will be consumed during production at the beginning of the
event that consumes the raw material. Likewise, an employee receives
control over his own labor as soon as he starts working on a task given by
the supervisor.

The provider agent has control over an economic resource before and
after an economic event that uses the resource, and the recipient agent has
control over the resource during the event; see Fig. 37. For example, if a
production worker needs special tools to perform a production operation,
the warehouse clerk has control over the tools before and after the eco-
nomic event, and the production worker has control over the tools during
the event that uses the tools.

time

Tool is under the control
of the provider

«decrement»«use»«resource»

«agent»
«provide»

«receive» «agent»

Tool is under the control
of the recipient

decrement event

Tool is under the control
of the provider

Fig. 37. Transfer of control during use of an individually identifiable resource

The provider agent transfers control to the recipient agent at the end of
the economic event that produces the resource. For example, a production
worker gives control to the warehouse clerk over the finished product
when the product is complete; see Fig. 38.

1.7 REA Conversion Processes in Detail 53

Fig. 38. Transfer of control at the end of production of an individually identifiable
resource

1.7.4 Conversion Duality

The conversion duality binds increment and decrement economic events
together into an REA conversion process.

The purpose of the conversion duality is to keep track of which re-
sources were used or consumed in order to produce others.

Conversion duality represents in the model why some resources are used
or consumed. For example, the pizzeria uses oven and consumes raw mate-
rials and labor because it produces pizza.

The following REA axiom specifies what the REA application models
should support.

In the REA application model of a conversion process, every incre-
ment economic event must be related by a conversion duality to a
decrement economic event, and vice versa.

An example of a conversion duality in the process of disassembling a
bicycle is illustrated in Fig. 39.

54 1 Structural Patterns at Operational Level

Fig. 39. The conversion duality

The conversion duality at the REA category level (which describes con-
straints of the application model) is a many-to-many (1..* to 1..*) relation-
ship, see Fig. 39. For example, a mechanic can consume his labor (the La-
bor Consumption event) and a bicycle (the Issue Bicycle event) for the
Wheel Removal and for the Frame Extraction events. The conversion dual-
ity must relate at least one increment event entity and one decrement event
entity.

The conversion duality in the REA application model (which describes
constraints of the runtime entities) is a many-to-many (0..* to 0..*) rela-
tionship. At runtime, typically two Wheel Removal events occur for one
Frame Extraction event.

1.7.4.1 The Value of Produced, Used and Consumed
Resources

In the conversion process, the enterprise use or consume resources in order
to produce other resources. The increment economic event either creates a
new resource unit, or increases the value of an existing resource by chang-
ing some of the resource’s features. In return, the decrement economic
events use or consume the enterprise’s resources.

The overall incremented value of the produced resources (considering
the enterprise’s entrepreneurial goals) should be higher than the overall
decremented value of the consumed or used resources. This statement is
true only on average. A specific production run can be unsuccessful and
the overall value of the resources is decreased. However, on average the

1.7 REA Conversion Processes in Detail 55

process must add value; otherwise, a rational enterprise would not perform
this process.

1.7.4.2 Time Order of Increments and Decrements

There is a logical constraint on the order of time in which the resources are
used, consumed, and produced in the conversion process. Usually the in-
crement event starts after or at the same time as some decrement event
starts, and ends before or at the same time as some decrement event ends
(resources cannot be produced from nothing); see Fig. 40.

.

«Use» or
«Consume» «Produce»

A decrement event

time

An increment event

after

«conversion
duality»

«Use» or
«Consume»

A decrement event

before

Fig. 40. Time constraints on conversion processes

1.7.5 Economic Agents

Have you ever witnessed a situation in which an administrative assistant of
a department is running around asking colleagues, “Who ordered this
package?” This situation can occur when the enterprise receives an item,
and probably also holds the legal rights to this item, but the physical con-
trol of this item is held by an employee, and the business application of the
enterprise or vendor, or both, is missing information about which person
should physically control the item.

56 1 Structural Patterns at Operational Level

Economic agents in conversion processes are individuals (not or-
ganizations) capable of controlling economic resources, and of
transferring or receiving the control to or from other individuals.

Examples of economic agents in conversion processes are employees (in
the labor consumption process), and people providing services for the en-
terprise.

In the conversion processes, the agents related to economic events can
transfer to each other control of the resources, but cannot usually have
ownership or other legal rights to these resources. These agents bear the
responsibility for the resources on behalf of the enterprise or of other
agents.

Therefore, the economic agents in the conversion process do not need to
be entities in the legal sense; the agents are always physical people. We
can say that, in general, economic resources are always controlled by
physical people or machines. However, sometimes it is not possible or
relevant to include them in the application model. In such cases the eco-
nomic agents can be an organizational unit, such as team, department, or
even enterprise (as organizational unit, not as legal entity). The meaning of
this modeling compromise must be specified by the application designer; it
could mean, for example, that “someone from the department” has control
over the economic resource.

The economic agent that holds the rights to the economic resources can
be different from the economic agent that physically has the economic re-
source under its control. For example, equipment and tools are owned by
the enterprise, but they are physically under the control of the employees
that work with the equipment and use the tools.

Likewise, a single economic agent can participate in both exchange and
conversion processes. For example, an employee has rights to his labor,
which he exchanges with the enterprise for financial compensation. Simul-
taneously, the employee physically controls some of the resources of the
enterprise, because he participates in the enterprise’s conversion processes.

1.7.6 Provide and Receive

Provide and receive are relationships between economic agents and eco-
nomic events. Provide and receive relationships answers the question
about between whom control is transferred, and, consequently, who con-
trols a resource at a given time.

1.7 REA Conversion Processes in Detail 57

A receive relationship in a conversion process determines the eco-
nomic agent who receives control over the economic resource as a
result of the economic event, but has no legal rights to the resource.

A provide relationship in a conversion process determines the eco-
nomic agent who loses control over the economic resource as a re-
sult of the economic event, but has no legal rights to the resource.

During an economic event, the control over an economic resource is
transferred from one economic agent to another. Therefore, there are ex-
actly two economic agents related to each economic event. In order to cre-
ate a complete model for the enterprise, we must specify for each eco-
nomic event which agent receives and which agent loses control over the
resource.

In the REA application model of a conversion process, each eco-
nomic event must be related by a provide relationship to an eco-
nomic agent, and by a receive relationships an economic agent.

In conversion processes, the provider and the recipient can be the same
agent, for example, in cases where the same economic agent is responsible
for consecutive business processes. For example, if an economic agent
Cook is the only employee in Joe’s Pizzeria, he would be both provider
and recipient in the economic events Material Issue and Pizza Production.

1.7.6.1 Rights to the Resources in Conversion Processes

The purpose of conversion processes is to change the features of the re-
sources, not to exchange the rights to the resources. The enterprise holds
the rights to the created, used, and consumed resources. In a liberal legal
system, the enterprise owns the resources it creates. Likewise, if resources
are consumed, the enterprise loses its rights to these resources.

In the REA application model, the enterprise holds the rights to the
resources the enterprise produces, uses and consumes.

An enterprise can by contract with other economic agents commit itself
to transfer to them ownership or other rights to the resources at the mo-
ment they are created or acquired by exchange. For example, employees
might during employment produce intellectual property, which we model
as an economic resource. Employees that create intellectual property own

58 1 Structural Patterns at Operational Level

it, but many companies have a clause in their employment contracts ac-
cording to which employees transfer to the company their intellectual
property, for example, protected by patents, that they produce during the
employment period. Such a transfer would be modeled as an economic
event in the scope of the labor acquisition process, see Fig. 41. For the En-
terprise, the increment events are the receiving rights of employee’s Labor
and the receiving rights to employee’s Intellectual Property from the Em-
ployee, and the decrement event is the Salary Payment.

Fig. 41. Acquiring intellectual property

1.7.6.2 The Enterprise Does Not Always Controls Its
Resources

The enterprise does not always control the resources it has rights to; the
economic agents that control the resources of the enterprise do not neces-
sarily act on behalf of the enterprise. Typical examples are services that are
provided by other agents to the enterprise’s resources, such as transport,
maintenance, and outsourced manufacturing operations.

The model in Fig. 42 illustrates an example of maintenance of an enter-
prise’s Equipment. The enterprise acquires a maintenance service from a
service provider by economic event Maintenance Acquisition. During eco-
nomic event Maintenance Consumption, the enterprise, which “owns” the
service when it is acquired, passes control over this service to the Service
Provider agent, who consumes it in order to perform the Maintenance
economic event. The Service Provider is the economic agent who controls
the enterprise’s Equipment during the Maintenance economic event. At the

1.7 REA Conversion Processes in Detail 59

end of the Maintenance event, the Equipment is again under the control of
the Enterprise.

Fig. 42. Equipment is not under the control of the enterprise during maintenance

1.7.6.3 Who Has Changed The Features Of The Resource?

The economic agents participating in the economic events during conver-
sion processes are not necessarily the same as the agents that changed the
features of the resources. The agents that changed the features of the re-
source are those whose labor has been consumed during the process.

For example, in the model in Fig. 43, the economic event Painting
changes a feature of a Product. The economic agent Supervisor has control
over the Product before, during, and after the Painting event. The eco-
nomic agent that changed the feature of the product was Painter, because
his Labor has been consumed in the Painting.

60 1 Structural Patterns at Operational Level

«receive»

«resource» «decrement» «increment»«consume»

«resource»

«produce»
«decrement»

«resource» «consume»

«economic agent»

«provide» «receive»

«economic agent»

«provide»

«economic agent»

«provide»

«decrement»

«conversion»

«use»

«economic agent»

«economic agent»

«receive»

«provide»

«receive»

Painter
paints Product

Supervisor has
Product under
his control

Fig. 43. Painter has painted the product under supervisor’s control

The concepts of providing and receiving control are related to the con-
cept of custody; see the separate discussion on CUSTODY PATTERN. Cus-
tody is a responsibility for the resources of the enterprise given to an eco-
nomic agent; for example, a warehouse clerk is responsible for the items in
the warehouse. The difference between custody and responsibility is that
custody can be established, transferred, and cancelled independently of the
economic events in conversion processes. Economic agents who have cus-
tody for the enterprise’s resources can be different of the agents whose
services are consumed in conversion processes that affect these resources.
For example, a manager of gas station has custody over the fuel in the un-
derground tanks, but the process of disposing of the fuel is provided by
other agents, often the customers in self-service gas stations.

1.8 Value Chain of Joe’s Pizzeria 61

1.8 Value Chain of Joe’s Pizzeria

Each business process utilizes resources generated by other processes

So far, we identified several exchange and conversion processes of Joe’s
Pizzeria, the Sales, Purchase, Labor Acquisition, and Pizza Production. At
the output of each process there is an economic resource that is an input of
another process, see Fig. 44.

Fig. 44. Value chain of Joe’s Pizzeria

The Pizza Production process produces Pizza, which is exchanged in
the Sales process for Cash. Joe’s Pizzeria uses Cash to purchase Raw Ma-
terials and Labor in the Purchase and the Labor Acquisition processes.
The Raw Materials and Labor are consumed to produce Pizza in the Pizza
Production process.

 Each business process in Fig. 44 can be modeled using the economic
resources, events, agents, and, if needed, also the commitments, contracts,
and other entities that we introduce later in this book. This expansion is
symbolically illustrated in Fig. 45.

62 1 Structural Patterns at Operational Level

«exchange process»

«conversion process»

«exchange process»«exchange process»

Fig. 45. Value chain with expanded processes

Modeling the value chain helps the application designer to get an over-
view over the business processes of the enterprise and has several other
advantages.

Firstly, it helps to identify the economic resources, by specifying which
things the users of a business application want to plan, monitor and con-
trol.

Secondly, it helps to find possible omissions in the REA models. For
example, the REA model for the Pizza Production process, illustrated ear-
lier in Fig. 29, uses the resource Oven. The Oven is not related to any in-
crement economic event, therefore the model violates one of the domain
rules, and the complete model in Fig. 45 cannot explain how Joe’s Pizzeria
receives and loses the rights to use the Oven. To resolve this problem, an
application developer can either remove the resource Oven from the model
(and, consequently, Joe will not be able to track its value using the soft-
ware application), or add a process with an increment event related to the
Oven. Joe can also decide to leave the model inconsistent (we call it a
modeling compromise), but it will be a rational and qualified decision (not
an omission) and Joe will be aware of its consequences.

The model in Fig. 45 is created from Joe’s Pizzeria’s point of view. For
every exchange process in Joe’s Pizzeria’s REA model, there must be a
corresponding exchange process in the REA model of Joe’s Pizzeria’s
trading partner. For example, in the REA model of the Customer, there
must be a Purchase process with the events Purchase and Cash Disburse-
ment, corresponding to the Sales process of Joe’s Pizzeria. Likewise, in the

1.8 Value Chain of Joe’s Pizzeria 63

REA model for the Employee, there must be a Labor Provision process
with the events Labor Sale and Cash Receipt, corresponding to the Labor
Acquisition process of Joe’s Pizzeria, see Fig. 46.

Fig. 46. Semantics of exchange processes

We can generalize Joe’s Pizzeria’s chain of business processes into a
pattern, REA VALUE CHAIN.

64 1 Structural Patterns at Operational Level

1.9 REA Value Chain Pattern

Growing grapes, aging the wine and testing quality are the main value-
adding processes of a winemaker

Context

An enterprise creates value by developing and providing goods and ser-
vices customers desire. Goods and services are created through a series of
business processes monitored and controlled by users with the support of
one or more business applications. For example, an enterprise can use one
business application for production and manufacturing, another application
for warehouse management, and yet another application for sales, distribu-
tion and finance.

Problem

Application designers would like to model business processes of the enter-
prise in a way that would enable them to create an REA model for each
process, with an option to implement each REA model as an independent
software component. However,

They are not able to identify all the resources that users of business ap-
plications would like to manage, monitor, and control. At what level of
granularity should the resources, and, consequently, the REA models,
be?
Application designers have already created REA models for several
processes, but would like to relate them together, get an overview of the
whole model and eventually identify missing processes.

1.9 REA Value Chain Pattern 65

Forces

The solution to this problem is influenced by four forces.

The business process model should be independent of the technology
the customer uses, and should rather describe fundamentals of the users’
business. As the implementation technology often changes the sequen-
tial order of processes and events, the relationships between processes
and events should be expressed as logical constraints rather than as se-
quential order. The software solution should cover any sequence physi-
cally allowable, and only restrict the order by business rules configur-
able at runtime.
On the other hand, the business process model should be precise enough
to be compatible with the REA model, i.e., it should be possible to re-
fine this model to an object-oriented application model expressed by re-
sources, events, and agents, from which a software application can be
generated.
If each business process will be implemented as an independent soft-
ware component or an application, the components and applications
must have well defined interfaces that enable them to communicate.
There are several methods for modeling business processes, such as
IDEF0, Porter’s value chain, flow charts, organization charts, and work-
flows, but none of them is sufficiently compatible with REA.

Solution

Model an enterprise as a chain of value-adding business processes that in-
fluence the value of the resources, which users of business application
want to plan, monitor and control. Inputs to each business process are the
resources used or consumed by the business process or given away to other
economic agents; outputs of each business process are the resources pro-
duced by the business process or obtained from other economic agents.
Both the exchange and conversion processes accomplish the business ob-
jective of adding value to the resources that are under the control of the en-
terprise, over the period reflecting the entrepreneurial goals of the enter-
prise.

Fig. 47. The REA value chain

66 1 Structural Patterns at Operational Level

The resources that are inputs and outputs to business processes should
be the resources that users of business applications want to plan, monitor,
and control. This determines the level of detail of the model.

The REA value chain consists of three modeling elements: REA Con-
version Process, REA Exchange Process and Resource Value Flow.

An REA conversion process is a process that uses or consumes the
resources that are under the control of the enterprise, and produces
new resources or changes some of the features of existing resources.

Examples of a conversion process are a manufacturing operation and a
service operation such as transportation.

An REA exchange process is a process that transfers some rights to
the enterprise’s resources to other economic agents, and receives
some rights to other resources in return.

Examples of an exchange business process that transfers ownership
rights are the sales and purchase processes; examples of processes that
transfer other rights, such as usage rights, are financing, labor acquisition,
and insurance.

A resource value flow is a relationship between REA processes.
This relationship represents the resource input and output of a proc-
ess. The direction indicates that of the value flow; the process at the
beginning of the flow (the end without an arrow) adds value to the
resource; the process at the end of the flow (the end with an arrow)
takes away value from the resource.

Each resource value flow must start and end in some business process;
no “loose ends” are allowed for resource value flows in well-formed mod-
els. This does not mean that at runtime the resource cannot just appear and
disappear due to unexpected events that are not part of the model; but this
is not the usual way in which an enterprise creates value. The value chain
describes the usual (not exceptional) way in which how enterprise creates
value; more precisely, it describes the processes that users of a business
application want to plan, monitor, and control.

Each resource value flow must start and end in some business proc-
ess. Each business process must have an incoming and an outgoing
resource value flow.

1.9 REA Value Chain Pattern 67

The resources that come from outside the enterprise or leave the enter-
prise are modeled as inputs and outputs of the exchange business proc-
esses.

A single resource can be both input and output of a single business
process. For example, cash is both the input and the output of the financing
business process; an item is both the input and the output of the quality as-
surance process.

An REA business process is either an exchange process or a conver-
sion process.

The statement above specifies that there are no “mixed” business proc-
esses whose responsibility would be both to change features of the re-
source and transfer rights between economic agents. In such a configura-
tion, a business application would leave out some information about
economic resources.

Process for Creating a REA Value Chain

As the first step in creating the value chain of the enterprise, it is helpful
to think about the context of the enterprise. To whom does the enterprise
give resources and from whom does it receive resources? The result can be
something similar to that diagrammed in Fig. 48.

Fig. 48. Business context of the enterprise

Customer buys Pizza that the Enterprise produces, which is an exchange
of Pizza for Cash. Vendor gives the Enterprise Ingredients and Raw Ma-
terials in exchange for Cash. Employees provide the Enterprise their labor
in exchange for Cash. A context diagram for the enterprise similar to the

68 1 Structural Patterns at Operational Level

one in Fig. 48 is useful as a starting point in identifying the company’s re-
sources.

The second step in creating an REA value chain is to identify the busi-
ness processes of the enterprise; an example is in Fig. 44.

The exchange business processes of a pizzeria would be the Sales proc-
ess that exchanges Pizza for Cash with the Customers, the Purchase proc-
ess that exchanges Raw Material for Cash with the Vendors, and the Labor
Acquisition process that exchanges Labor for Cash with the Employees.

The enterprise typically also has one or more conversion processes, in
which it produces or adds value to the product or service that it sells to the
customers, and in which it consumes or uses the resources obtained from
the vendors and employees. The conversion process of the pizzeria is the
Pizza Production process that produces Pizza from Raw Material and la-
bor.

The third step in creating a value chain is to hierarchically decompose
the business processes to find the resources which the users of a business
application would like to plan, monitor, and control. The level of detail at
which to stop the decomposition is determined by the needs of the users of
a business application. The REA value chain should be decomposed to the
level at which the users of a business application need information to plan,
monitor and control the resources of the enterprise. This level varies from
one company to another. For example, for most companies it is sufficient
to know the total amount of cash in the treasury, but in some cases keeping
track of all the coins and the bills is required.

«exchange process»
Sales

«conversion process»
Pizza Production

«exchange process»
Purchase

«exchange process»
Labor Acquisition

«conversion process»
Transport

«conversion process»
Planning

Raw Material

Trasport Service

Cash

Pizza

Equipment

Schedule Labor

Labor Labor

Fig. 49. Value chain with supporting processes

1.9 REA Value Chain Pattern 69

The fourth step in creating the value chain is to identify the rest of the
business processes, such as planning, marketing, accounting, human re-
sources, and legal services, and to add them to the enterprise’s value chain.
These processes consume the resources of the enterprise, but using tradi-
tional modeling techniques it is not always a trivial task to determine what
value they add. The REA framework helps analyze the purpose of these
processes, and how they add value to the enterprise’s resources.

Fig. 49 illustrates the value chain with two more processes: Planning,
which consumes Labor to assure that all resources needed to produce Pizza
are available, and Transport, which consumes Labor and Equipment to de-
liver Pizza to the Customers. The Part III of this book is devoted to these
modeling issues.

«exchange process»
Sales

«conversion process»
Pizza Production

«exchange process»
Purchase

«exchange process»
Labor Acquisition

«conversion process»
Transport

«conversion process»
Planning

Raw Material

Trasport Service

Cash

Pizza

Equipment

Schedule Labor

Labor Labor

«exchange process»
Leasing

Oven

Fig. 50. Value chain after the consistency check

The fifth step in creating the value chain is to consolidate the model
with the REA models for each process, and to assure that the model does
not violate the domain rules. For example, a model for Pizza Production in
Fig. 29 contains a resource Oven related by a use relationship to a decre-
ment event Oven Use. As every economic resource must be related to both
an increment and a decrement event, an application designer might decide
either to remove the resource Oven from the model, or to add an increment
event related to the Oven. Joe told the application designer that Joe’s Piz-

70 1 Structural Patterns at Operational Level

zeria has a leasing contract for the Oven. Leasing is essentially an ex-
change of the Oven for Cash, and Fig. 50 illustrates the value chain with
the Leasing process.

Resulting Context

An application designer is focused on processes that add value to the final
products and services directly, as well as on supporting processes. A soft-
ware solution may need to support some of these processes, others may be
manual.

Due to well-defined resource interfaces between business processes, ap-
plication designers can design a different business software application for
each business process. Therefore, the REA value chain determines the sys-
tem level architecture of the business software solution. Implementing
each REA process as an independent software component makes the soft-
ware solution more adaptable to unanticipated changes in the customer’s
business.

The REA value chain ignores the time sequence of the processes, which
is exactly what we want to achieve for design purposes. We know that the
time sequence is very volatile, and in reality many of these processes occur
concurrently. At this point we would like to concentrate on the purposes of
the processes and the economic resources that are their inputs and outputs.

 A drawback of this approach is that for a reader it might be difficult to
find a place to start reading this diagram. Probably, the easiest way to start
reading the diagram is to identify a natural end of the value chain, i.e., the
sales process, or if it is not there, some exchange process equivalent to
sales, usually a process whose output is cash and whose the input is a
product or service; for example, for a municipality library, this can be a
process of lending books. Then, continue reading the diagram backwards
through the value chain to the processes, whose output is the product or
service being sold, and find the input resources to these processes; and so
on.

1.10 REA Value Chain in Detail 71

1.10 REA Value Chain in Detail

In this section we explain semantics of the economic resources, and REA
exchange and conversion processes.

The purpose of the REA value chain is to link together REA models
into a chain of value-adding processes, and define the interfaces be-
tween them.

The REA Value Chain is a network of business processes whose pur-
pose is to directly or indirectly contribute to the creation of the desired fea-
tures of the final product or service, and to exchange it with other eco-
nomic agents for a resource that has a greater value for the enterprise in its
perception of its entrepreneurial goals.

The REA value chain model does not describe sequences, steps, and
tasks of the business processes. Time sequences of activities vary often
with technology changes, but the changes in sequence typically do not
change the fundamental way in which the process adds value. Therefore,
the value chain model focuses on the core phenomena of the business, and
abstracts the time sequences that change often.

The time sequence is given indirectly in the form of logical constraints.
For example, the conversion process Pizza Production cannot start unless
the resources Labor and Raw Materials are available.

1.10.1 Resource Value Flows

Economic resources are the inputs and outputs of the REA exchange and
conversion processes.

In order to create a complete model for the enterprise, we must specify
for each resource how the enterprise obtains rights to it, for example, how
is it received, or produced, and how the enterprise loses rights to it, i.e.,
how it is consumed, or given away.

An enterprise can receive rights to a resource by producing it in a con-
version process, or by receiving it in an exchange process. In the REA
model, it is indicated by a produce or an inflow relationships between the
resource and an increment economic event, respectively.

An enterprise can lose rights to a resource by consuming it in a conver-
sion process, or by giving it away in an exchange process. In the REA
model, it is indicated by consume or outflow relationships between the re-
source and a decrement economic event. The enterprise does not lose

72 1 Structural Patterns at Operational Level

rights to a resource by using it in a conversion process, as the resource ex-
ists after the economic event related to the resource by a use relationship.

In the REA application model, every economic resource must be re-
lated to at least one increment event by an inflow or produce rela-
tionship, and to at least one decrement event by an outflow, use, or
consume relationship.

1.10.2 Economic Resources

Economic resources represent the values that users of a business applica-
tion seek to control.

Economic resources are things that are scarce and have utility, that
are under the control of an economic agent, and that users of busi-
ness applications want to plan, monitor, and control.

Examples of economic resources are products and services the enter-
prise provides, money, and raw materials, tools, and services the enterprise
uses and consumes.

Things we call economic resources must be scarce, not readily available
at no cost, such as air, or sea water by the seashore. Antarctica ice is an
economic resource in Europe, but not in Antarctica.

The users of business applications are important in the definition of
economic resource: the perspective of the users of a business application
determines which economic resources are modeled. As different users are
interested in different resources, the REA application model must contain
economic resources for all intended users of the application.

Value of an economic resource for an economic agent is determined by
the rights the agent has to the resource, and by the features of the resource.
An agent can change its rights to the resource by an exchange process; and
the features by a conversion process

1.10.2.1 Quantity of the Resource

Economic resources typically have a property Quantity that indicates
whether and how much of the resource is under the control of the enter-
prise. For example, the quantity of the economic resource cash indicates
the amount of cash that the enterprise has under its control. This amount
can consist of owned and borrowed cash. If we would like to know how

1.10 REA Value Chain in Detail 73

much is owned and how much is borrowed, we need to examine the eco-
nomic events that are related to the economic resource cash.

Quantity for discrete items that can be identified as individual units,
such as cars and buildings, is always measured in pieces and may have
values 1 and 0, indicating whether the item is, or is not, under the control
of the enterprise. Quantity for resources that cannot be individually identi-
fied, such as screws, gasoline, electricity, and work, is measured with an
appropriate unit such as kilogram, liter, joule, or hour. Occasionally, we
might come across discrete items that can be split into smaller parts, such
as pizza. We model a process of cutting pizza into slices as a conversion
process, which produces several units of a new resource “a slice of pizza,”
each with quantity 1.

Setting the value of quantity to 0 means that the resource is not under
the control of the enterprise, and that the enterprise wants to keep informa-
tion about this resource in its software system. For example, the resource
has been sold and the enterprise is bound by guarantee or service agree-
ment to the new owner of this resource, or the resource has been consumed
or destroyed, and the enterprise has to keep record of this resource for re-
porting or statistical purposes.

The property quantity is different than property quantity on hand. Quan-
tity on hand is usually a property of a resource group, see the GROUPING
PATTERN, and is a non-negative integer for discrete items, and a real
number for the resources that cannot be individually identified.

1.10.2.2 Value of the Resource

The value of the resource indicates how much the resource is worth to the
economic agents that are related to it via economic events or commit-
ments. The value of the resource depends on four factors:

On the features of the resource, we discussed the features in the Conver-
sion Processes in Detail chapter.
On the rights an economic agent has to the resource; we discussed the
rights in the Exchange Processes in Detail chapter
On the economic agent related to this resource via economic events and
commitments. As the resource can be related, via economic events and
commitments, to different economic agents simultaneously, it might
have (and typically has) a different value for each economic agent. For
example, goods in trade have different values for the seller and the
buyer.
On how the resource is used or potentially can be used by the economic
agents. The actual use is specified by related economic events, and po-

74 1 Structural Patterns at Operational Level

tential use by commitments (see the COMMITMENT pattern for details).
As the resource can be related to several economic events and commit-
ments simultaneously, a resource might have different values for a sin-
gle economic agent at the same time. For example, a car has a different
value (and consequently a different price) for the agent, in the case he
intends to rent it, than in the case he intends to sell it.

Fig. 51. Value and quantity of the economic resource

Although for the reasons mentioned above the resource can have several
values simultaneously, it is useful to model the resource value as an prop-
erty on an economic resource, as illustrated in Fig. 51; but since such a
value is a derived (calculated) property, the model must specify how the
value is obtained, or it might otherwise be interpreted incorrectly. For ex-
ample, the value can reflect the cost of the resource for the enterprise, or
the price in the case of sale of the resource, or the price in the case of
rental of the resource.

The value of the resource is variable in time and can change on its own,
not only as a result of economic events in the application model. For ex-
ample, the value of food or medicine rapidly decreases after expiry date.
However, the enterprise does not know the exact value of such expired
food or medicine, until they dispose of or consume it, perhaps for other
purposes than originally intended. Therefore, the full explanation of this
phenomenon requires a notion of economic contract or schedule, and its
evaluation; we intend to return to the evaluation of contracts in the adden-
dum to this book on the Internet.

The value of some resources can be negative, for example, the value of
toxic waste: to dispose of toxic waste decrements the company’s resources.

The value of the economic resources is often affected by economic
events that are unknown at the time users of business applications want to
estimate the value. For example, the precise value of goods on stock (the
sale price) is unknown until the goods are sold. Therefore, the value of the
economic resources must often be estimated, considering the entrepreneu-
rial goals of the enterprise. Estimation of the value of the resources there-
fore encompasses considering the resources’ transformation in the enter-
prise’s value chain, and then estimating the price of a contract with a

1.10 REA Value Chain in Detail 75

potential customer. As this is difficult to do in the real-world, most re-
sources use two value attributes: cost and unit price, both substituting the
real resource value.

1.10.2.3 Cost and Unit Price

The cost indicates the aggregated value of the decrement events from ex-
change processes directly or indirectly related to the resource. For exam-
ple, maintenance (an economic event) increases the cost of equipment;
more precisely, the cost of equipment is increased by the aggregated value
of the economic resources that have been used and consumed during main-
tenance.

The cost of a resource is often affected by economic events that occur
continuously and will be registered in the future (such as the heating of
buildings). Therefore, various estimation methods are used to determine
the approximate cost of the resource.

In some business applications, resources have attributes unit price or list
price. They hold the suggested price of the resource in the sales process;
more precisely, they determine the default price of the resource in sales
contracts to unknown customers. Resource can have these attributes for
convenience, but they are not an intrinsic part of the REA application
model.

1.10.2.4 Modeling Ad Hoc Resources

A company might sometimes sell ad hoc resources or services that are not
registered in their business applications. Some business applications allow
for typing free text on an invoice, such as “miscellaneous,” with a price. In
this case the economic event has not been related to any resource, and, fur-
thermore, the “miscellaneous” resource instance has not been created in
the business application. This is an example of modeling compromise. This
might be convenient in some software applications, but an application de-
signer must be aware of its consequences. It would not possible to create
reports on the “miscellaneous” resources, and the reports on “standard”
products might be incorrect. A better solution would be to create a “mis-
cellaneous” or “unspecified” resource group and relate it using the outflow
to an economic event, see Fig. 52. This is also a modeling compromise, but
the application will be more consistent, and allow for better reporting than
by omitting the outflow relationship from the model.

76 1 Structural Patterns at Operational Level

Fig. 52. Miscellaneous or unspecified resource (modeling compromise)

1.10.2.5 Individually Identifiable Resources

Economic resource in the REA model is an actual unit, which reflects the
fact that a real thing is produced, used, consumed, purchased or sold. The
resources whose units are individually identifiable, have, or in principle
may have, a serial number or its equivalent, see Fig. 53. The
IDENTIFICATION behavioral pattern discusses this concept in detail.

Fig. 53. Individually identifiable resources

Whether the resources are individually identifiable is often a decision of
the users of a business application. For example, Joe might decide that he
does not want to keep track of each individual Pizza. In this case, the Pizza
entity in Fig. 53 would represent a set of pizzas, such as the pizzas pro-
duced in a period of time, or other identifiable set, which Joe is interested
in planning, monitoring and controlling. Screws and nails are other exam-
ples of the resources, which, in principle, are individually identifiable, but
which users of business applications often do not want to plan, monitor
and control individually. Such resources are modeled as resources with in-
dividually unidentifiable elements, described in the following section.

1.10.2.6 Resources with Individually Unidentifiable Elements

Resources such as money, bulk or fluid material, consist of individually
unidentifiable elements; for example, molecules in gasoline or grains in
pizza flour are not individually identifiable. Such resources are identified
by the volumes of material in the scope of the economic events, such the
volumes of material related to sales, production, and transportation. For
example, the volume of gasoline produced during a certain time interval is

1.10 REA Value Chain in Detail 77

identifiable, and flour is delivered in bags, which are identifiable. Packages
of screws can be assigned unique numbers. There might be legal reasons to
identify and register them – in the food and chemical industries it is usual
to keep samples of raw materials from the delivered bags.

Heating Oil as a Resource

Fig. 54 illustrates two REA models for supplying heating oil from a truck
to a house tank. The upper part illustrates the heating oil supplier view-
point; the bottom part illustrates the household (customer) viewpoint. The
conversion processes in Fig. 54 model the movement of heating oil is from
a truck into a house oil tank. The exchange processes model the sale
(change of ownership) of the Supplied Heating Oil.

There are three identifiable instances of heating oil: Heating Oil in
Truck Tank, Supplied Heating Oil, and Heating Oil in House Tank. Sup-
plied Heating Oil is the oil that actually flows through the pipe from the
truck to the house tank. It is a transient resource, consumed at the same
time as it is created: the supplied heating oil is created by removing it from
the truck’s pipe, and it is consumed by mixing it with the oil already pre-
sent in the house tank. After the supplied oil is in the house tank, it is not
possible to distinguish the supplied oil that came from the truck from the
oil that was already in the house tank.

Money as a Resource

Coins and bills are identifiable entities; therefore, they are (actual) re-
sources. Money in a bank account is also an (actual) resource, but it does
not have individually identifiable elements. Therefore, coins and bills on
one side, and money in a bank account on the other side must be modeled
as different kinds of resources. Fig. 55 illustrates withdrawal of Cash, an
exchange process between Bank and Customer; the Customer gives to the
Bank an amount of Money from his bank account, and receives Coins and
Bills in return. Some banks charge a fee for this transaction, which is also
illustrated in Fig. 55. The increments and decrements are from customer’s
perspective.

78 1 Structural Patterns at Operational Level

Quantity

«resource»

Quantity

«resource»

«increment»

«decrement»

«decrement»

«produce»

«outflow»

«consume» Quantity

«resource»

«increment»

«produce»

«decrement»

«increment» «resource»«inflow»«exchange»

«decrement»

Quantity

«resource»

«consume»

«resource»
«use»

Oil transferred
throught the pipe,
e.g. 2000 liters

Supplied oil plus
the oil that already
was in the tank,
e.g. 6000 litres

e.g. 10 tons

«increment»
«decrement»

«resource»«outflow»
«exchange»

«inflow»

«conversion»

«conversion»

«agent»

«provider»
«recipient»

«agent»
«receive»

«provide»

«agent» «agent»

«provide»

«provide»

«receive» «receive»

«agent»

«agent»

«receive»

«provide»

«provide» «receive»

Oil transferred
throught the pipe,
e.g. 2000 liters

Fig. 54. Fluid materials as resources

1.10 REA Value Chain in Detail 79

«receive»
«provide»

«provide»

«receive»

Amount
Account number

«resource»
Money in
Account

«decrement»
Withdrawal

«outflow»
«increment»

Coin Receipt

Value

«resource»
Coin«inflow»

Bill number
Value

«resource»
Bill

«inflow»

«decrement»
Exchange Fee

Charge«outflow»

«agent»
Bank

«agent»
Customer

«provide»

«provide»

«receive»
«receive»

«increment»
Bill Receipt

«exchange»

Fig. 55. Coins, bills, and money in an account as resources

Labor as a Resource

We can think of labor instance as having a specific identity, which consists
of the identity of the person providing the labor, and the time and place the
labor is provided. A labor also has a length (acquired amount in hours or
days) specified by the Acquire Labor event; this is similar to the volume of
resources with individually unidentifiable elements.

employee’s specific skills
aquired amount

«resource» period

«decrement»«consume»

period

«increment»

«agent»

«inflow»
date

«decrement»

«agent»

«exchange»

«conversion»

period

«increment»

«resource»

«produce»

«resource»

«outflow»

«provide»

«receive»

«provide»«receive»

«agent»«agent»

«provide» «receive» «provide»

«agent»

«receive»

period when
labor has been
consumed

period for which
labor has been
acquired

Fig. 56. Labor as a resource

80 1 Structural Patterns at Operational Level

1.10.3 Alternative Models of Business Processes

There are several other methods for modeling business processes, such as
IDEF0, Porter’s value chain, various forms of flow charts, and organiza-
tion charts. Any of these methods is entirely compatible with REA.

Application designers could use a function modeling method, such as
IDEF0 (Integration Definition for Function Modeling, 1993), designed to
model the activities, decisions, and actions of an enterprise. Activities are
related by their inputs, outputs, controls, and mechanisms; see Fig. 57.
IDEF0 activities can be hierarchically refined into models with greater de-
tail. IDEF0 is not intended to be used for modeling sequences, which is
good from an REA perspective; but the method is not intended to help un-
derstand how the activities add value to the economic resources.

Fig. 57. IDEF0 activity is less specific than the REA Processes.

If we compare the IDEF0 activity with an REA business process, IDEF0
inputs and outputs correspond to the REA economic resources consumed
and produced by the IDEF0 activity. IDEF0 mechanisms are people, ma-
chines, or systems that orchestrate the transformation of inputs to outputs.
Some mechanisms are REA economic agents, and some are REA eco-
nomic resources. Controls regulate or constrain the output of the activity.
IDEF0 controls correspond to REA policies, i.e., entities that relate to-
gether types of economic agents, events, and resources.

The major advantage of IDEF0 – that it is a general modeling technique
– is also a drawback from an REA perspective, because there are no mod-
eling rules that would guarantee that the activity can be seamlessly decom-
posed to an REA model. Therefore, IDEF0 is useful as a tool for commu-
nication between users, domain experts, and developers, and is good for
understanding business processes, but its intention is not to link together
the REA components.

1.10 REA Value Chain in Detail 81

An application designer could use flow charts for modeling all business
processes of the company. Flow charts, or its UML version called activity
diagrams (UML 2.0 Superstructure Specification, 2005), focus on the or-
der and sequencing of the activities. Creating such model is good for un-
derstanding the processes of the enterprise, but it is not at all suitable for
designing a software application that should support many variants of se-
quences. If we could describe the purpose of each process instead of actual
sequences of activities, the software application would increase its ability
to adapt to changes. This way of modeling becomes increasingly important
when the essence of the customer’s business remains the same, but the
technology the customer uses changes. You would like the application
model to be robust against and easily adapt to new patterns of commerce,
such as outsourcing, sub contracting, direct sales, and also patterns un-
known today.

An application designer could use organization charts. Organization
charts are good for expressing what resources managers and workers will
control, execute, and monitor, but the model should focus rather on the
flow of value in the transition of raw materials to a finished product.

An application designer could use Porter’s value chain (Porter 1980).
Porter’s value chain is a tool and conceptual framework for examining and
diagnosing the competitive advantage of a company. Although very useful
as a modeling technique for business systems, the original purpose of Por-
ter‘s value chain was not to design software business applications. Porter’s
value chain divides processes of a company into core business processes
that add value to the end products of the enterprise, and support processes
that enable the core processes and add value indirectly. In fact, every proc-
ess adds value (otherwise a rational company would not have it), and the
result of analysis should be a complete model expressing how every proc-
ess contributes to the complete chain. Sometimes it makes sense to exclude
a process from the value-adding chain, but you should make such decision
as a modeling compromise after the analysis has been performed, rather
than at the beginning of the analysis. Overall, Porter’s value chain, by con-
sidering all known processes of the enterprise, is a good starting point in
creating the REA model.

2 Structural Patterns at Policy Level

The previous section, Structural Patterns at Operational Level, described
how to create REA-based application models that model economic ex-
changes that actually occurred.

This section focuses on REA application models that describe the gen-
eral rules that govern what events should, could, or should not occur under
certain conditions. The COMMITMENT pattern specifies which events
economic agents agreed upon to occur in the future. The central patterns in
this section are the CONTRACT PATTERN and the SCHEDULE
PATTERN, that bind together commitments and terms, which instantiate
additional commitments in case the agreed commitments have not been
fulfilled. The POLICY PATTERN describes certain kinds of business rules,
the rules or restrictions that the enterprise wants to apply to the economic
events and commitments in which it participates. The GROUP PATTERN
and the TYPE PATTERN introduce the essential infrastructure at the policy
level, as the commitments are often related to types of resources instead of
actual resources, and policies are typically applied to groups of entities in-
stead of actual entities.

The patterns LINKAGE, RESPONSIBILITY and CUSTODY are not the
essential part of the modeling infrastructure, but they are often needed by
business logic as structural elements of the REA application model.

REA Structure at Policy Level
What Could, Should or Should not Happen

REA Structure at Operational Level
What Has Happened

Behavior

TYPE
homogeneous

collections

GROUP
heterogenous

collections

COMMITMENT
future events

CONTRACT
commitments

in trade

POLICY
business rules

SCHEDULE
commitments in

production

LINKAGE
structure of
resources

RESPONSIBILITY
structure of

agents

CUSTODY
responsibility
for resources

Fundamental Skeleton

Extended Skeleton

Customizable Functionality

84 2 Structural Patterns at Policy Level

2.1 Group Pattern

Often it does not make sense to talk about just actual instances such as “a
copy of Lewis Carroll’s Alice’s Adventures in Wonderland,” or “a copy of
Linda Rising, and Mary Lynn Manns’ Patterns for Introducing New
Ideas”; we would like to talk about “items on the shelf”

Context

Business rules seldom refer to a specific instance, such as an actual cus-
tomer or an actual item. For example, Joe’s Pizzeria gives a 20% discount
to the customers living in a specific geographic area. In principle, Joe can
create an individual discount rule for every customer from this area. How-
ever, if Joe’s Pizzeria has 100 customers from this area, then the business
application would contain 100 rules, and they would all be the same. This
is possible, but impractical. A better solution is to have one rule, and apply
it to the entire set of these customers. However, the REA entities at opera-
tional level represent actual resources, events and agents; there is no con-
cept representing sets or collections.

Problem

How do we model heterogeneous collections or sets of REA entities?

Forces

The following forces shape the solution:

The purpose of the business rules is to give general guidelines that are
applicable to groups of economic resources, events, and agents, rather
than to actual resources, events, and agents.

2.1 Group Pattern 85

The REA model at operational level does not contain any entity that
could naturally represent groups of things that share something in com-
mon.
There are no restrictions on who the members of the group could be.
Members of the same group do not need to have anything in common,
except the fact that they belong to the same group. For example, there
can be a group containing both economic events and resources. In other
words, groups are heterogeneous collections.

Solution

Introduce a group as a structural element of the REA application model.
An REA entity group represents a set of REA entities that have something
in common. The group entity is related to its members by a grouping rela-
tionship. Members of the group can be any entity in the REA model: re-
sources, events, agents, commitments, claims, contracts, types, or other
groups.

Fig. 58. Group and grouping

Grouping is a many-to-many relationship. An REA object can be a
member of several groups simultaneously, and a group can have (and usu-
ally has) several members. There can be REA objects that do not belong to
any group, and there can be a group that does not have any members (for
example, there can be no books on the shelf).

86 2 Structural Patterns at Policy Level

Fig. 59. Groups and their relationships to other REA entities

Fig. 59 illustrates some relationships between the group entity and other
REA entities. Policy (see the POLICY PATTERN) can be related by an ap-
ply relationship to groups of events, agents, and resources. Groups can also
be related to other groups; and they can also be members of other groups.

In the simplest cases, users of business applications maintain links be-
tween members and groups. For example, if a user creates a new catalogue
item, he will also assign this item to the correct VAT (value added tax)
group.

More sophisticated solutions let business applications determine what
groups a member belongs to based on the value of the properties of the
member entity. This functionality can vary from one application to an-
other, and from one grouping to another. One possible implementation is
CLASSIFICATION PATTERN, described in Part II, Behavioral Patterns.
Another possible implementation is BUDGET (not described in this book);
a budget is a group of economic events or commitments that are expected
to occur in the future.

Examples

The group is an important element in specifying business rules. Groups
can be used to classify resources into tax groups; trading partner groups
can reflect their value to the enterprise; and employees can be grouped ac-
cording to their skills. A budget is a group of events or commitments ex-
pected to occur in a well-defined time interval in the future. Customers can
be high-volume and low-volume.

2.1 Group Pattern 87

Fig. 60. Groups of products in MSN shopping

Fig. 60 illustrates examples of groups at http://shopping.msn.com. A
product can belong to the groups Home, Beauty, Books, Clothing, Com-
puters, Deals, Electronics, Flowers and others. The Home group has sub-
group Books & Magazines, which has a subgroup Children & Teen Books,
which has a subgroup Juvenile Fiction. A specific product can belong to
several groups; for example, Harry Potter and the Half-Blood Prince by
Rowling, J. K. is both a Science Fiction, Fantasy, & Magic and an Action
& Adventure book.

88 2 Structural Patterns at Policy Level

2.2 Type Pattern

Types are homogeneous groups; all their members conform to certain
definitions, descriptions or blueprints

Context

Product catalogues often contain a description of the resources that a cus-
tomer can buy, rather than actual resources. When customers place an or-
der, they specify the parameters of the product; when a vendor success-
fully fulfills the order, he delivers an actual product that conforms to the
parameters of the customer’s order.

A similar story can be told for production. A recipe or blueprint contains
the parameters, description, or definition of a product that is produced or a
raw material that is consumed. When the production is successfully com-
pleted, products that match the blueprints are produced.

If you design a business application, you often need to create a model
that contains catalogue-like descriptions of resources, events, and agents.

Problem

In the REA application models, there is often need for an entity that holds
the description or definition of a resource, an event, an agent, or another
REA entity. However, the REA model at operational level does not have
an entity that can naturally represent the catalogue-like description, defini-
tion, and blueprints.

Forces

The following forces need consideration:

2.2 Type Pattern 89

Catalogue items describe economic resources, but they often do not re-
fer to actual, unique items. It is also common that sales order lines refer
to catalogue items specifying features of the resources, rather than
specifying actual instances of goods.
Business rules seldom refer to an actual instance, such as a physical cus-
tomer or a physical item. The purpose of the rules is to give general
guidelines that are applicable to certain types of economic resources,
events, and agents, rather than actual resources, events, and agents.
As similar entities share their features and properties, the model can be
simplified by extracting the shared features and properties and moving
them to another entity, which will be related to the entities that share the
features or properties.

Solution

Introduce an Economic Resource Type, Economic Agent Type, Economic
Event Type, Commitment Type, and Contract Type as structural elements
of the REA application model. They hold the definition or description of
an economic resource, event, agent, commitment and contract, see Fig. 61.

Economic
Resource

Economic
Resource

Type

0..1

0..*

specification

Economic
Event

Economic
Event Type

0..1

0..*

specification

Economic
Agent

Economic
Agent Type

0..1

0..*

specification

Commitment

Commitment
Type

0..1

0..*

specification

Contract

Contract Type

0..1

0..*

specification

Fig. 61. REA types and REA entities

Conceptually, every REA entity has an REA type, but an REA applica-
tion model does not need to contain the REA types if there is no need for
it. Conversely, for a given REA type, there is no requirement for there to
be an instance of this type. An REA entity and its type are related by a
specification relationship. Resource types can be related by a reservation
relationship to the commitments. Fig. 62 illustrates typical use of Eco-
nomic Resource Type.

90 2 Structural Patterns at Policy Level

Fig. 62. Relationships between REA types

Examples

A seat on a train with the following description “business class, non-
smoking, window” is a resource type. The seat with “number 11 in car
number 22 of train IC 129 from Copenhagen to Aarhus on 25 April 2005,
departing at 9:00 hours from Copenhagen” is an implementation of this
type.

Serial Number

«resource»
Car

Model name

«resource type»
Car Model

«specification»

e.g. VF32CBFZE40227290

e.g. Ford Focus Trend

Fig. 63. Car model as a resource type

A specific car with serial number e.g. VF32CBFZE40227290 is an eco-
nomic resource; its resource type is a definition or specification of this re-
source, such as Ford Focus Trend, see Fig. 63.

A labor type (see Fig. 64) is a qualification or set of standard skills re-
quired for a specific job. A labor instance is the qualification and the set of

2.2 Type Pattern 91

skills of a physical person. A work of a certified public accountant is a la-
bor type. The work of accountant “Jette Friisdahl on 8 May 2005 from
8:30 a.m. to 11:30 a.m.” is an implementation of this type.

employee’s specific skills
when performed

«resource»

standard skills

«resource type»

«specification»

Fig. 64. Labor type and actual labor

Resulting Context

In many business applications, the list of resource types should not be en-
coded into a business application; that is, the users of a business applica-
tion should be able to add and remove resource types at runtime. For ex-
ample, Navision Financials has an entity Item, representing all tangible
resource types, and an entity Work, representing resource types similar to
services.

Types enable users to add more business knowledge into a business ap-
plication, something that has both benefits and drawbacks. The drawback
is that the business knowledge in the software system needs maintenance.
The benefit is that a software application that is aware of the business
knowledge can more efficiently guide and help its users.

Sometimes we come across a situation in which a resource changes its
type during its lifetime. The change of type is usually the result of a con-
version process; therefore, we suggest modeling the type change as the
consumption the resource of the old type and the production of a resource
of the new type.

92 2 Structural Patterns at Policy Level

2.3 Difference Between Types and Groups

All tomatoes are of the same type, but belong to different groups

Types and groups both represent sets of objects, and in this sense types and
groups are similar. However, information captured by a group and a type is
different.

Groups are heterogeneous collections; they can contain members of dif-
ferent types, although their members might share some characteristics, for
example, we might have a group of tomatoes that are all red.

Types are homogeneous collections; all members have the same charac-
teristics defined by the type. A type is a special kind of group. It is a group
that defines concepts and characteristics that apply to all current and future
embodiments of the type.

The decision whether a specific collection should be modeled as a type
or group often depends on its intended use in the REA model. In REA,
groups are typically used to specify policies; policies are typically applied
to groups. Types are typically used to specify reserved resources (in the
cases the actual resources cannot be specified at the reservation time);
commitments via reservation relationships are typically related to types.

An REA entity can be a member of several groups simultaneously, and
can change its group and be removed from a group, usually as a result of
the changing of values of its attributes, properties, methods or other char-
acteristics. When an object changes its group, it does not change its defini-
tion, because it is defined by its type.

Groups, but seldom types, often contain properties for aggregated or sta-
tistical values derived from the properties of their members. For example,
the group of tomatoes in a basket might contain a property for the total
number, total weight, and average weight of the tomatoes in the basket.

2.4 Commitment Pattern 93

2.4 Commitment Pattern

Sales order lines are not economic events; they are promises of economic
events

Context

Most economic events do not occur unexpectedly. Economic events are
usually scheduled or agreed upon beforehand by economic agents. For ex-
ample, a sales order line is a promise to sell goods to a customer; the total
price is a customers’ promise to pay for the goods, and the seller’s promise
to accept the payment.

Problem

How do we model promises of future economic events?

Forces

Solving this problem requires the resolution of the following forces:

Application designers would like to have a mechanism in the application
model specifying details about the promises of economic events. Eco-
nomic events cannot be used for this, because economic events specify
actual increments and decrements of resources, while promises result
only in reservations of resources.
There might be (and usually is) a difference between plans and what ac-
tually happens. The users of a business application would like to know

94 2 Structural Patterns at Policy Level

whether the economic events occurred as they were promised, and in-
formed about eventual differences.
If an enterprise promises to give its own resources to its trading part-
ners, users of business application would, most likely, like to know,
what resources to expect in return. Conversely, if an enterprise expects
to receive some resources, the users of business application would like
to know what resources its trading partners expect.
If an enterprise schedules to the production of resources, users of a
business application would like to know what resources it would require
to use or consume. Conversely, if an enterprise plans to use or consume
resources, the users of a business application would like to know what
resources will be produced from them.
The users of a business application would like to know who should be
responsible for the received or produced resources, and who should be
responsible for the resources used or consumed during the production or
given to other economic agents.
For each promised exchange, the users of a business application would
like to know the trading partners to whom the resources should be trans-
ferred, and from whom they should be received.

Solution

Model the promise of the economic event as a commitment entity. A com-
mitment in exchange processes represents obligations of economic agents
to provide or receive rights to economic resources. A commitment in con-
version processes represents scheduled usage, consumption, or production
of economic resources.

Each commitment is related to an economic event by a fulfillment rela-
tionship, representing the fact that commitments are fulfilled in the future
by one or more economic events executed by the participating economic
agents, see Fig. 65. Commitments have usually properties for the Sched-
uled Date or period of the economic event, and the Scheduled Value of the
event.

The Scheduled Value does not need to be expressed as an actual num-
ber, but, for example, as a rule. For example, the price of a service can be
determined according to actual costs.

2.4 Commitment Pattern 95

Fig. 65. Commitment and economic event

Each promised exchange and conversion consists of at least two com-
mitments: increment commitments, which are expected to increase the
value of economic resources, and are fulfilled by increment economic
events, and their related decrement commitments, which are expected to
decrease the value of economic resources, and are fulfilled by decrement
economic events. The relationship between increment and decrement
commitments identifies which resources are promised to be exchanged or
converted to which others, and is called exchange reciprocity or conver-
sion reciprocity.

Fig. 66 illustrates relationships between commitments, economic events,
economic agents, and economic resources in exchange processes. Fig. 67
illustrates the same relationships in conversion processes.

Provide and Receive

Commitments are related by the provide and receive relationships to the
economic agents that are scheduled to participate in economic events, and
they consequently determine who should have rights to or the control over
economic resources. The provide and receive are one-to-many relation-
ships. One economic agent can participate in zero or more commitments;
an economic commitment must have exactly one committed provider and
exactly one committed recipient economic agent.

96 2 Structural Patterns at Policy Level

Fig. 66. Relationships of commitments in exchange process

Fig. 67. Relationships of commitments in conversion processes

2.4 Commitment Pattern 97

Exchange and Conversion Reciprocity

The exchange reciprocity relationship between the increment and decre-
ment commitments identifies in the model which resources are promised to
be exchanged for which others. Likewise, the conversion reciprocity iden-
tifies which resources are promised to be used or consumed in order to
produce others.

The commitments paired by the reciprocity relationship do not need to
be instantiated (created at runtime) at the same time. For example, the in-
surance process illustrated in the Modeling Handbook contains an example
of an increment commitment (insurance payment) that is instantiated only
under certain conditions specified by the insurance contract. Another ex-
ample is a commitment to buy shares of a company, paired with a recipro-
cal commitment of dividend payments. The two commitments are instanti-
ated at different times.

Fulfillment

The purpose of the fulfillment relationship is to validate whether the eco-
nomic events fulfill their commitments.

This can often be done automatically. For example, the RECONCILI-
ATION PATTERN (see Behavioral Patterns) can validate that quantity on
the sales order line (i.e., the value of the commitment) is the same as the
sum of the shipped quantities (values of the economic events).

Sometimes, a human decision is needed to determine whether the eco-
nomic events fulfill their commitments. For example, if a payment com-
mitment was fulfilled by payment in different currency, due to variable ex-
change rates the monetary value of the commitment can differ from the
monetary value of the economic event. In such cases, a human decision
might be needed to judge whether the difference is sufficiently small to
consider the commitment fulfilled.

The fulfillment relationship is a many-to-many relationship between the
economic commitment and the economic event. One economic commit-
ment can be fulfilled by several economic events, just as one shipment
commitment can be fulfilled by partial shipments, and one economic event
can fulfill several economic commitments, just as several installments can
be paid once.

Reservation

In order to specify what resources will be needed or are expected by future
economic events, each economic commitment is related to an economic re-
source or a resource type by a reservation relationship. For example, a

98 2 Structural Patterns at Policy Level

sales order line is a decrement commitment to ship goods; the sales order
line is related by the outflow reservation relationship to the goods or the
goods type.

When sales persons accept customer orders, they want a business soft-
ware application to check whether there are products available when the
order is due, and to make sure that these products will be available to the
customers during the economic event related to the economic commitment.

The reservation relationship between the resource and commitment
represents the features of the resource and rights associated with the re-
source that will be changed or transferred by a future economic event, see
Fig. 68.

Fig. 68. Reservation

The commitment can be related to either a resource type or a resource.
For example, a sales order for a new car contains a commitment to deliver
a car of a certain model, (i.e., resource type); a sales order for a used car
contains a commitment to deliver a physical car (i.e., resource). The reser-
vation of a hotel room contains a commitment to provide a hotel room with
certain characteristics, such as of a certain size and with certain number of
beds (i.e., resource type); but sometimes a guest might require a specific
room, in which case the commitment is related to an (actual) resource.

If economic commitment is related to resource type, at some point in the
future, but always before the economic events starts, the commitment must
also be related to an actual resource that conforms to the reserved resource
type, see Fig. 69.

2.4 Commitment Pattern 99

Fig. 69. A commitment must eventually be related to an actual resource

The time of allocation varies. For example, in the hospitality business,
the reservation is related to a room specification until the day of the guest’s
arrival. The morning of the day of arrival, the receptionist assigns (a hu-
man assisted, and not an automated task) a room numbers for each reserva-
tion that starts that day. In the airline business, physical seats are assigned
at the time of reservation, with the possibility of replanning. In theatres
and cinemas, the tickets are assigned at the time of reservation. The algo-
rithm first reserves the best seats within a certain price group, such as
those in the middle of the theatre, and later reserves the seats closest to the
best places.

We call the commitment fully specified if it is related by the reservation
relationship to an (actual) resource.

Domain Rules

The following domain rules apply to any REA application model. As
commitments are a mirror image of the economic events at the policy
level, the domain rules are similar to the rules for the REA model at opera-
tional level, with one addition: commitments must be fulfilled by eco-
nomic events. These rules can be used to ensure consistency of REA appli-
cation models.

Each commitment must be related to a resource, and might (but does
not have to) also be related to a resource type.

Each commitment must be related by provide and receive relation-
ships to economic agents.

100 2 Structural Patterns at Policy Level

Each increment commitment must be related by a exchange or con-
version reciprocity relationship to a decrement commitment, and
vice versa.

Each increment commitment must be related by a fulfillment rela-
tionship to at least one increment economic event, and each decre-
ment commitment must be related to at least one decrement eco-
nomic event.

A commitment that is part of a conversion must be related to the
economic event of a conversion process; likewise, a commitment
that is part of an exchange must be related to an economic event of
an exchange process.

Resulting Context

The reciprocity relationship often has additional functionality that relates
together the values of the increment and decrement commitments. For ex-
ample, in economic exchanges, the reciprocity can calculate the total price
(value of the outflow commitments) based on the line item prices (value of
the inflow commitments). The reciprocity might also validate that the cost
(value of the outflow commitments) is lower than the price (value of the
inflow commitments). The functionality of the reciprocity relationship can
vary in different implementations; but the fundamental point is that the in-
crement and decrement commitments are related.

2.5 Contract Pattern 101

2.5 Contract Pattern

Contracts are statements of intent that regulate the behavior among or-
ganizations and individuals. Clauses of a good contract define what should
happen in the cases of cancellation and violation of the commitments

Context

Commitments represent the optimistic path of an exchange. For example, a
sales order contains commitments to deliver goods and commitments to
pay. However, sometimes goods are not delivered as expected and pay-
ments arrive late. Partners usually also agree upon what should happen if
the initial commitments are unfulfilled.

Problem

How do we specify in the REA model what should happen if the commit-
ments are unfulfilled?

Forces

We need to balance the following forces:

Commitments specify what economic events should occur. However, in
the case in which they do not occur as they should, economic agents
usually agree upon what should happen next. The rules specifying what
should happen next can be very complex, and keeping track of what
should happen, and when, can be cumbersome. Therefore, application
developers would like this information present in the business applica-

102 2 Structural Patterns at Policy Level

tion, so that these rules and actions can be monitored and triggered
automatically.
There are usually several inflow commitments paired through exchange
reciprocity with several outflow commitments. These commitments are
often considered a unit. Sometimes, it does not make sense to fulfill
only some commitments and not to fulfill others, but sometimes this is
acceptable. Application designers would like some entity to contain
such rules.
Intended recipients or providers of the resources might be different eco-
nomic agents than the agents that agree about the exchange.

Solution

If a commitment is unfulfilled, the terms of a contract specify additional
commitments.

A Contract is an entity in the REA application model containing incre-
ment and decrement commitments that promise an exchange of economic
resources between economic agents, and terms. Commitments were dis-
cussed in the previous pattern. Terms are potential commitments that are
instantiated if certain conditions are met. These conditions can be various,
such as a commitment not being fulfilled, or a resource being at a certain
location. For example, economic agents can agree upon penalties if the
commitments are unfulfilled. If the commitments are unfulfilled, the con-
tract will instantiate a new commitment to pay a penalty. The terms and
commitments are the clauses of the contract

Every contract must be related to two or more economic agents by a
party relationship. These agents do not necessarily have to be the provider
and recipient of economic resources. The economic agents that are parties
in a contract can be different from the economic agents related to the
commitments within the same contract, and different from the agents par-
ticipating in the economic events which fulfill these commitments. For ex-
ample, a flower shop can deliver flowers to a different person than the one
who placed the order, and the flowers will be paid for by a third person,
different from the persons who placed the order and received the flowers.

2.5 Contract Pattern 103

Fig. 70. Contract, commitments and terms

Offer and Quote have the same structure as contracts that have not been
accepted by all parties in a contract. Economic agents negotiate the content
of the commitments and terms, and when they agree upon commitments
and terms, the quote or offer becomes a contract that binds the agents that
are parties in the contract. There is usually certain period of negotiations
and draft versions from when the offers and quotes are created and until
the contracts are accepted by both contracting parties.

Examples

Examples of contracts are sales orders, purchase orders, contracts for pro-
viding various services, and employment contracts. We illustrate several
examples of contracts in the Part Four of this book, Modeling Handbook.

Fig. 71 illustrates a business document for a simple sales order without
delivery and payment terms. The REA application model for this sales or-
der is illustrated in Fig. 72. The Sales Order contains two Sales Lines
specifying the goods; the sales line entity corresponds to the line item in
Fig. 72. The Payment Line specifies the price (i.e. expected amount of re-
ceived cash); the entity Payment Line corresponds to the Total line in
Fig. 72.

104 2 Structural Patterns at Policy Level

Sales Order
Enterprise: Joe’s Pizzeria Date: 11 May, 9:15
Customer: Addy

Number Item Quantity Delivery Time

6128 Pizza Margherita 2 units 11 May, 18:00
8694 Cola 0.5l 1 unit 11 May, 18:00

Total 21,00 USD 11 May, 18:30

Fig. 71. A sales order is an example of a contract

DateSigned

«contract»

DeliveryTime
Quantity

«decrement
commitment»

PaymentTime
Amount

«increment
commitment»

Name
Number

«resource type»

1

0..*

«reservation»

«resource»

1

0..*

«reservation»

0..* 0..*

«reciprocity»

«agent» «agent»

1..*

1«clause» 1

1..*

«clause»

0..*1

«party»
buyer 10..*

«party»
seller

Fig. 72. The REA application model of a sales order

Fig. 73 illustrates an instance of this Sales Order (an actual sales order
that conforms to the application model from Fig. 72; the data of this sales
order corresponds to that in the example in Fig. 71.

Note that the REA model does not specify how to calculate Total, e.g.
how the amount of 21 USD is related to two units of pizza and 0,5l of
Cola. The calculation rules may range from a simple sum of the unit prices
of the pizza and cola, to the complex rules taking into the account the iden-
tity of the customer, date, time, and volume of the sale. The fact that price
calculation vary from one software application to another, is the reason
why the price calculation is not part of REA. REA formulates the funda-
mental principles common to all business applications. Part II of this book,
Behavioral Patterns, shows how to extend the REA skeleton by application
specific functionality.

2.5 Contract Pattern 105

Fig. 73. An instance of the REA application model of a sales order

Fig. 74 illustrates a more complicated example of a sales order with
shipment and payment terms. For example, Joe’ Pizzeria and Addy agree
that Joe’s Pizzeria will sell five units of Pizza Margherita to Addy on
Tuesday, and Addy will pay for them on Friday. If Joe’s Pizzeria does not
ship on Tuesday, Joe’s Pizzeria pays a 20 USD penalty to Addy on Friday.
If Addy does not pay on Friday, he pays a 30 USD penalty to Joe’s Pizze-
ria the following Monday. The informally sketched properties of the terms
and commitments can be implemented as DUE DATE PATTERN and
VALUE PATTERN; see Part II, Behavioral Patterns.

If Joe’s Pizzeria does not deliver 5 units of Pizza Margherita on Tues-
day, the contract instantiates the penalty, and the model between Thursday
and Friday looks as in Fig. 75.

After the Penalty Payment commitment has been instantiated, all com-
mitments still need to be fulfilled by economic events. According to this
contract, the Joe’s Pizzeria still has to ship and the agent Addy has to pay,
even in the case in which Joe’s Pizzeria does not ship at all. A better con-
tract might specify that the payment should occur within a certain time pe-
riod from the shipment.

106 2 Structural Patterns at Policy Level

Fig. 74. Simple contract with shipment and payment terms

Resulting Context

The precise specification of commercial contracts is a subject of intensive
research. Simon Peyton-Jones, Jean-Marc Eber, and Julian Seward have
developed a functional language for financial contracts; this language does
not have an REA concept of reciprocity (Peyton-Jones, Eber 2003). A lan-
guage for REA-compatible contracts is being developed by Fritz Henglein
and his students (Henglein 2005).

There are also higher level agreements between economic agents that
regulate the behavior of the individual contracts. Agreements differ from
contracts in that they do not contain commitments, but only conditional
clauses, and they are hierarchical in nature. Agreements are sketched in
Fig. 76.

An example of an agreement is a service level agreement for mainte-
nance of equipment, which specifies, for example, that the enterprise may
place maintenance orders (i.e. contracts) under specific conditions, and re-
ceive discounts for specific services.

2.5 Contract Pattern 107

Fig. 75. Simple contract after one of the terms’ conditions has been met

ContractTerm
10..*

clause

Economic Agent

0..*

2..*
party

Agreement

0..1

0..*

governing
agreement

0..1

0..*

governing
agreement

0..*

1

clause

1

0..*

receive

0..*

1

provide
2..*

0..*

party

either or

Fig. 76. Agreement and contract

108 2 Structural Patterns at Policy Level

2.6 Schedule Pattern

Schedule is a series of things to be done or of events to occur at or during
a particular time or period

Context

Production processes usually do not occur spontaneously; a rational com-
pany schedules the production and usage of its resources that should take
place in the future. However, production sometimes does not occur as
planned because of unexpected circumstances. A rational company would
like to mitigate risks and determine additional factors that should occur if
the originally planned operation does not occur as expected. Making a plan
is a way to minimize the risks of missing some resources in the middle of a
production. The purpose of the plan is to make sure that for all processes
the needed resources are identified, as well as when they will be needed.

Problem

How do we specify conversion processes that should occur in the future?

Forces

The following forces influence the solution:

If use, consume, and produce economic events do not occur as commit-
ments specify, the enterprise would like to have an alternative plan to
mitigate the consequences. Application developers would like this in-
formation present in the business application.

2.6 Schedule Pattern 109

A conversion process usually consists of several use, consume, and pro-
duce economic events that have various, often complex dependencies on
each other. If some of these events do not occur as committed, the miti-
gation plan depends on a combination of the values of the economic
events. The application model should contain an entity containing such
dependencies.
The economic agents that are responsible for the overall conversion
process can be different from the agents that control the economic re-
sources.

Solution

A schedule is a collection of increment and decrement commitments in
conversion processes and mitigation plans. Mitigation plans instantiate ad-
ditional commitments under certain conditions, typically if some of the
original commitments are unfulfilled, see Fig. 77. Unlike invoking penal-
ties in the contracts, instantiating commitments from mitigation plans is
usually not an automated task, and it requires the assistance of the users of
business applications.

A schedule is related by a party relationship to the economic agents that
are responsible for the schedule. The agents that are related to the schedule
can be different from the agents that are related to the commitments. There
are usually two agents related to the schedule. One of the agents sets the
requirements of what should be done (representing a client in the planning
process), and another agent is responsible for the actual conversion, (repre-
senting the supplier in the planning process).

Fig. 77. Schedule

110 2 Structural Patterns at Policy Level

Example

The example in Fig. 78 illustrates a simple schedule of a project Produce
Pizza, assigned to Tom, Susie, and Mike. Project Produce Pizza is an in-
crement commitment, and the consumption of the labor of Tom, Susie, and
Mike are decrement commitments.

Fig. 78. A simple schedule

The REA application model corresponding to the diagram in Fig. 78 is
illustrated in Fig. 79. The schedule Project Schedule has an increment
commitment Project, which reserves (expects) the economic resource
Pizza. The decrement commitment Task reserves consumption of the eco-
nomic resource Labor. The properties start, finish, and duration can be im-
plemented as DUE DATE PATTERN; see Part II, Behavioral Patterns.

Fig. 79. REA application model for simple schedule

Fig. 80 illustrates an instance of the REA application model from
Fig. 80 that corresponds to the example in Fig. 78.

2.6 Schedule Pattern 111

Fig. 80. An instance of the REA application model of a schedule

There are many examples where the detailed schedule means success or
failure for the whole company. In just-in-time production, the resources
are delivered exactly when they are needed. Delivery too early would
mean a need for storage and late delivery can stall the production.

112 2 Structural Patterns at Policy Level

2.7 Policy Pattern

A policy is a rule of practice or procedure to guide decisions and actions

Context

Not everything is allowed; law, system, tradition, culture, and internal
company rules constrain the economic exchanges or conversions that are
possible or desirable in any situation. For example, rules might specify
what qualification of employees is needed to perform certain operations, or
what kind of equipment is needed to transport hazardous materials.

The rules and constraints can be specified in media other than a software
application, for example, in a policy handbook that users of business appli-
cations have to study. However, it would be more efficient and useful if a
software application could be aware of the rules and constraints, and help
users act upon them. For example, if a user tries to register or orchestrate
an event that does not conform to the rules, the business application could
inform the user of the rule violation, advise him on what to do instead, and
prohibit him from committing or executing an illegal exchange or conver-
sion.

The REA application model specifies the economic events, agents, and
resources applicable to a certain line of business. Using the core REA ap-
plication model, users of business applications can plan and register any
kind of economic event that is part of the application model. The core
REA model alone does not have a placeholder for rules governing what
types of economic events are allowed or not allowed in certain situations.

Problem

How do you make the business application aware of the fact that some
economic events are not allowable or desirable in certain circumstances,
and even prevent users from doing something illegal?

2.7 Policy Pattern 113

Forces

We need to balance the following forces when modeling such rules:

The users of business applications, without the help of an application
designer, should themselves be able to create and modify the rules about
the allowability of economic events.
Business rules are not localizable into a single entity because they repre-
sent constraints that affect several entities. However, these rules must be
part of some entity in the model.
Although constraints are not localizable into a single entity, their im-
plementation should not be scattered across entities in the application.
There should be a single place in the model to hold the rules. It should
be easy to find and document the rules in the system. Likewise, if an en-
tity is affected by some rule, it would be nice to easily identify all rules
that affect this entity. For example, it should be easy to determine what
rules apply to a given customer group.
As the software application needs to interpret the rules, they should be
represented in the language at the same level of abstraction as the soft-
ware application. If the application model is an object-oriented model,
then rules should also be represented in terms of objects and relation-
ships, and not, for example, as free text. If the model is represented in a
domain-specific language determined by a framework, the rules should
also be represented in the domain specific language, and not, for exam-
ple, as code in a general purpose language.
The software application with rules should be open to extensions. For
example, existing rules on customers should not be affected by adding a
new customer group.
If the rules change, the software application should be able to keep the
old version of the rules, and also to execute the business logic according
to the old rules. For example, there is sometimes a need to register eco-
nomic events that occurred before the rules changed; such a registration
should be processed according to the previous version of the rules.

Solution

The policy entity encapsulates constraints on the economic exchanges and
conversions. The policy is related to (can be applied to) a group; see
Fig. 81.

114 2 Structural Patterns at Policy Level

Fig. 81. Policy

An example of the REA application model with a Sale Policy is Fig. 82.
The Sale Policy can be applied to Item Group, Event Group, and Customer
Group. This policy can specify that, for all Events related to specific Items
and to specific Customers, certain rules apply. An instance of this policy is
given in Fig. 83.

«group» «group»

«policy»

0..*

0..*

«apply»

0..*

0..*

«apply»

«group»

0..*

0..*

«apply»

Fig. 82. Policy in the REA application model

Policies should be related to the entities at the policy level, i.e., to the
groups or types, rather than to the entities at the operational level. Policies
related to the groups or types have more explanation power than policies
related to the actual entities, and allow for reasoning about the policy. For
example, if Addy is a customer of Joe’s Pizzeria, which introduces a policy
We do not sell to Addy, this policy includes no explanation. However, if
the enterprise introduces a policy We do not sell to people who have mis-
behaved several times, and Addy belongs to this group, this policy explains
the reason.

Sometimes it might seem that there is a specific policy affecting only a
specific resource, event, or agent. In these cases, the solution in Fig. 81
leads to creating a group with only one member. Although this might be
considered an unnecessary complication, this model forces an application
developer to generalize the policies, and other entities that belong to this
group are typically discovered later.

2.7 Policy Pattern 115

Examples

Consider the policy specifying that an enterprise is not allowed to supply
tobacco products to minors. The Supply Policy “Tobacco to Minors” is ap-
plied to the groups “Tobacco Products,” “Supply,” and “Minors.” Fig. 84
illustrates that if a user of the business system attempts to register an in-
stance of the Sale economic event with “PM Box” as an Item and “Addy“
as a Customer (illustrated by dashed lines), the policy would be enforced;
thus, the sale would not be allowed.

What would really happen in the business application depends on the
implementation of the policy. The system response could range from noti-
fying the user of the business system about the violation of the policy (by
raising an information event) to preventing him from registering the event.

«group»
Tobacco Products:

Item Group

«group»
Supply: Event Group

«policy»
Tobacco to Minors:

Supply Policy

«apply»

«group»
Minors: Customer Group

«resource»
PM Box: Item

«decrement event»
: Sale

«economic agent»
Addy: Customer

«outflow» «receive»

«economic agent»
Joe’s Pizzeria: Enterprise

«provide»

«apply»

«apply»

«grouping» «grouping» «grouping»

 Fig. 83. A policy

There are policies applicable only during certain time intervals. For ex-
ample, the Sunday Rule policy specifies that the Joe’s Pizzeria does not
sell alcoholic beverages on Sundays. The REA application model in
Fig. 84 contains a group Period of Sale, representing a group of moments
in time. The Period of Sale has the value “Sunday,” and Item Group, has
the value “Alcoholic Beverages,” and they are related to the Sale Policy
entity. If Joe’s Pizzeria attempts to sell an item that belongs to the group
“Alcoholic Beverages” and the time of sale belongs to “Sunday,” the pol-
icy would be enforced. Please notice that the Sunday Rule policy is not re-
lated to the Customer Group, which means that it applies to all customers.

116 2 Structural Patterns at Policy Level

This example also illustrates that if a policy becomes obsolete, the users
of the business application can easily restrict its validity in time, rather
than deleting the policy. As the economic events are always registered af-
ter they have occurred, this practice enables the users to enforce the policy
on the events that occurred when the policy was still in force, although the
events have been registered after the policy became obsolete. Of course, in
such cases it is not practical for the business application to prevent users
from registering the events that violate the policy, as they already oc-
curred, but the business application might notify the users that the policy
has been violated.

Fig. 84. A time-limited policy

Another example of a policy is “A junior bookkeeper cannot approve a
payment over $50,000.” This policy would be related to the groups “Junior
Bookkeeper,” “Payment,” and “Over $50.000”.

The functionality of the policy entity can be implemented in various
ways. One possible implementation is a behavioral pattern called MATRIX
RULE (not included in this book, but sketched below), which can be used
to implement policies. The name “matrix rule” comes from a representa-
tion of this rule in the form of matrix, in which the columns represent the
groups and the rows represent the different policies that apply to these
groups. The matrix representation of the policy is illustrated in Table 1.

2.7 Policy Pattern 117

Table 1. A matrix representation of the matrix rule

Period of
Sale

Value

Resource
Group
Value

Event
Group
Value

Event
Group
Value

Agent
Group
Value

Result

All Tobacco All Supply Minor Not allowed
All All Over

$50.000
Payment Junior

Book-
keeper

Not allowed

Sunday Alcoholic
beverages

All All All Not allowed

Resulting Context

This pattern expresses rules in the form of relations, instead of code.
Therefore, users of business applications can add more rules, and modify
and remove existing ones without modifying code.

It is easy to determine which policies apply to a specific entity by identi-
fying the groups of which this entity is member, and traversing the rela-
tionships between the groups and policies.

The architecture of the business application must support adding new
groups and policies and relating them at run time. If the actual implemen-
tation of a business application does not support it, or if the business appli-
cation has only one or very few policies, and they are not going to be
changed and no new ones added, then this pattern does not apply. The
models described in this book allow for adding new groups and policies,
but not new group types and policy types. For example, if the application
model contains a policy called Sale Policy, users of the business applica-
tion can add, modify, and remove various Sale Policies. However, the us-
ers of business applications cannot add a policy of type Purchase Policy
because it would require modifying the application model. We made that
choice because the model with the entities Customers, Vendors, etc. is eas-
ier to explain than a more general model that would allow for dynamic
modifications.

Users of a business application need to identify the right groups; other-
wise, they cannot specify the policies. The information necessary to evalu-
ate the policy must be in the system. For example, if there is a policy not to
supply alcoholic beverages to people under a certain age, the age of the
buyer must be in the system.

We need to consider the intended results of the individual policies, and
to establish the infrastructure that supports these results. The results of
policies always prohibit some events, but they can be implemented with

118 2 Structural Patterns at Policy Level

varying levels of enforcement, from notifying the user of the application to
preventing him from executing the prohibited action.

A policy entity does not have to be related to groups of commitments, as
information about whether the commitments conform to the policy can be
derived from the policies applied to groups of economic events.

2.8 Linkage Pattern 119

2.8 Linkage Pattern

If you build a house, what are you going to build it out of?

Context

Some economic resources, such as gasoline, are homogeneous units, but
some consist of parts. Parts of the economic resources are also often eco-
nomic resources. A bicycle consists of a frame and wheels, and a wheel
consists of a tire, hub, a rim, and spokes. For scheduling a conversion
process, it is useful to specify the parts of an economic resource consists.

Problem

How do we capture in the REA model information about the structure of
the economic resources?

Forces

Three forces drive the solution to this problem:

Many resources can be considered as consisting of parts. However, in-
cluding a new “part” entity in the REA modeling framework is not a
good solution, because parts are economic resources as well.
There can be multiple levels of decomposition. A part can consist of
parts, which again can consist of parts.
Hierarchical structure between parts exists at both the operational and
the policy level. Users of business applications would like to specify the
parts an actual economic resource consists of, as well as the parts a re-

120 2 Structural Patterns at Policy Level

source type should consist of. A resource type can consist of multiple
instances of the same type, just as bicycle consists of two wheels (and
other parts).

Solution

The structure of a resource can be captured by the linkage relationship; see
Fig. 85. Linkage exists at two levels of abstraction. The linkage relation-
ship between economic resources specifies their actual structure. The link-
age type between economic resource types specifies the bill of material, a
compositional structure that characterizes all resources of the type.

An economic resource that contains other resources is called parent, and
economic resources contained in the other resources are called compo-
nents. This terminology (inconsistent with the terminology used in object-
oriented software) has been standardized by the American Production and
Inventory Control Society (APICS) (Arnold 1998).

Economic
Resource

Economic
Resource

Type

specification

component

parent

linkage type

component

parent

linkage

Fig. 85. Linkage

Linkage and linkage type are many-to-many relationships. A resource
can be used as a component in zero or more other resources, and a resource
can consist of zero or more other resources.

Like many other REA relationships, the linkage and linkage types rela-
tionships also have properties. The Quantity Required property of linkage
type specifies how many components a parent should consist of, and the
Quantity Used property of linkage specifies how many components the
parent actually consists of.

Linkage type can be seen as a recipe to perform the transformation of
resources. A linkage type contains information about the structure of mate-
rials and the tasks necessary to perform a transformation. A schedule adds
actual time intervals to this structure, and links it to actual resources and
economic agents that would be responsible for the transformation.

2.8 Linkage Pattern 121

specification

0..*

parent

1

0..*parent

1

QuantityRequired
0..*

1

component

QuantityUsed
1

component

0..*

Fig. 86. Linkage in detail

There might exist several linkage types for an economic resource, which
basically means that we might have several recipes to produce the re-
source. For a given schedule, we must specify both the resource and the
linkage type we are planning to use for the transformation.

Examples

Bill of Material. A bill of material states precisely how much of each re-
source must be used or consumed to produce a given amount of another re-
source, and perhaps even in what order.

Work Breakdown Structure. A work breakdown structure is similar to
bill of material, but specifies activities or tasks necessary to perform a lar-
ger task or project.

Resulting Context

Business applications with linkage relationships can report on the varia-
tions between the recipes and described procedures and the actual produc-
tion runs.

Users of business applications are expected to modify the linkage type
relationships over time to improve the transformation processes. This
might lead to the requirement in business applications for recording the
history of the changes of the linkage type relationship.

Sometimes it is not worth standardizing all the tasks in a work break-
down structures. In some business situations it is easier to specify the ex-
pected result (an economic resource type), and to rely on humans to do
what they know best.

122 2 Structural Patterns at Policy Level

2.9 Responsibility Pattern

Responsibility is a capacity for decisions, thoughts or actions

Context

In many cases, an economic agent is responsible for other economic
agents. For example, a manager is responsible for the employees in his or-
ganization, and the enterprise is responsible for the actions of its subsidiar-
ies.

Problem

How can we represent responsibility between economic agents in the REA
application model?

Forces

The solution needs to balance the following forces:

An economic agent can change its responsibility to other economic
agents independently of the exchange or conversion processes with
which it is involved. For example, employees can change their reporting
relationships during their employment.
Responsibility often determines the organizational structure of a com-
pany. Employees report to their managers, who report to their managers,
and so on. However, there can be multiple organizational hierarchies. In
some organizations, employees reporting to their department manager
(this is often called “solid line reporting”), are simultaneously members
of a team and report also to a team leader (this is often called “dashed
line reporting”).

2.9 Responsibility Pattern 123

Organizational structures significantly vary from one company to an-
other. Many organizations consist of divisions, departments, and teams,
but there are a number of different organizational structures. The rea-
sons for an the organizational structure are practical, such as a certain
limit of how many direct reports a manager is able to coordinate, rather
than things that can be derived from domain rules.
The organizational structures as departments and teams can be inde-
pendent of the reporting relationships. A manager can establish several
teams from his direct subordinates, and there can be members of a sin-
gle team that report to different managers.

Solution

The responsibility relationship between economic agents describes a de-
pendency between two economic agents, in which the superordinate agents
are responsible for the economic events in which the subordinate agents
participate, see Fig. 87.

Fig. 87. Responsibility

Responsibility can be used to model the reporting relationship that
forms the organizational structure of the enterprise.

Organizational units such as departments and teams are more or less ar-
bitrary sets of economic agents, and we can model them in the REA appli-
cation model as groups. The fact that an economic agent is a member of an
organizational unit is modeled as a grouping relationship. The grouping re-
lationship can also be applied between groups and models the hierarchical
structure of the organizational units; see Fig. 88.

Responsibility can also be used to model assignment, a relationship de-
scribing, for example, that a salesperson is assigned to specific customers,
or a purchaser is assigned to specific vendors.

124 2 Structural Patterns at Policy Level

Economic Agent

Group

organizational unit

member

grouping

0..* subordinate unit

0..* superordinate unit

grouping

0..* direct report

0..* reports to

responsibility

Fig. 88. Organizational units

Resulting Context

The responsibility relationship is not sufficient for modeling all aspects of
organizational structures. For example, a concept such as an open position
can be modeled as a labor type. Therefore, modeling the organizational
structure of a company requires creating an REA model for the company
that includes labor, labor type, and labor acquisition contract. This explains
why organizational structures differ so much from one organization to an-
other; and why the full model of the organizational structure encompasses
several REA concepts.

2.10 Custody Pattern 125

2.10 Custody Pattern

Warehouse personnel have the custody of the goods in the warehouse

Context

Many companies make their employees responsible for specific resources.
Such information is useful if something happens to the resources and we
need to contact someone able to take care of the situation. This responsibil-
ity does not directly imply any exchanges of resources, tasks, or labor the
employee performs with the resources he is responsible for; such cases
would be modeled as commitments or economic events. We talk about
general responsibility for things, such as cashiers in a shop responsible for
the cash in the cash register, or warehouse clerks responsible for the goods
stored in a warehouse.

Problem

In the REA framework, how do we model the responsibilities of economic
agents for specific economic resources?

Forces

Application developers may need to address the following forces:

Some economic agents are responsible for economic resources. If this
responsibility is related to exchanges or conversions, it could be mod-
eled as an economic event. However, there are cases in which this re-

126 2 Structural Patterns at Policy Level

sponsibility has a longer term, and is not related to individual exchanges
or conversions.
If something happens to specific economic resources, the users of busi-
ness applications would like to get information about who to contact or
hold responsible for the resources.
The economic agent responsible for the resources can be different from
any of the agents involved in conversions or exchanges. For example, a
manager of a gas station is responsible for the gas in the underground
tanks, although replenishing it is done by supply personnel, and dispens-
ing it is done by customers in self-service gas stations.
There can be responsibility for a specific resource shared among several
economic agents.

Solution

The responsibility for economic resources is modeled in the REA frame-
work as a custody relationship between an economic agent and an eco-
nomic resource (when an individual agent is responsible for an individual
item), between an economic resource group and an economic agent group
(when a group of agents has shared responsibility for a group of re-
sources), between an economic resource group and an economic agent
(when an individual agent is responsible for a group of resources), or be-
tween economic resource and economic agent group (when a group of
agents has shared responsibility over an individual resource); see Fig. 89.

Fig. 89. Custody

2.10 Custody Pattern 127

Examples

The model in Fig. 90 specifies that warehouse managers should have re-
sponsibility for the goods in the warehouse. Warehouse Managers is a
group of economic agents (even if the group has only one member, as we
explained in the chapter on groups and types). The Items in Warehouse is
the group of items that physically are located in the warehouse.

The custody type implies that there will be a specific custody link from
every internal agent instance in the group Warehouse Managers to every
item instance is in the group Items in Warehouse.

Fig. 90. Custody of an economic agent to group of resources.

Fig. 91. Custody at runtime

128 2 Structural Patterns at Policy Level

The model in Fig. 91 illustrates instances of three Items, I001, I002, and
I003, that have their location at the warehouse, and a Warehouse Manager
Peter has custody over these items, because he belongs to the group Ware-
house Managers. Peter does not have custody over the item I004, which
does not have location in the warehouse, and therefore does not belong to
the group Items in Warehouse.

Resulting Context

The concept of custody allows users of business applications to plan,
monitor, and control the economic agents that have responsibility for spe-
cific economic resources. For example, they can identify the economic
agent that has custody over a specific resource.

 Custody is not an essential part of the model, as, for example, economic
event is. If custody is not used by business logic, and users of business ap-
plications are not interested in this information, it is simpler (i.e., better)
not to model custody in the application model.

3 An REA-Based Example Application

By Christian Vibe Scheller

In this chapter I will show you just how easy it is to use REA for develop-
ing software applications. I will do so by developing a simple order web-
site, where Joe’s customers can order pizzas. The finished webpage will
look like this:

Fig. 92. Joe’s web shop

The customer enters his order by first entering his name and address.
This allows Joe’s Pizzeria to know where to deliver the pizzas and to
whom. If the customer is already registered in the system, he can press the
link labeled “already a customer?” This will cause the web page to display
the customer’s address without the customer having to type it himself.

130 3 An REA-Based Example Application

The customer proceeds to enter his order by specifying which pizzas he
wants to order and how many. The web page responds by calculating the
total amount the customer has to pay for the order.

Finally, the customer presses the submit button. Only then will all the
order information be stored in the database. In a real web application the
customer would then have to specify credit card information, etc., but we
will skip this part for the sake of simplicity.

3.1 Representing the Metamodel

A special concern when implementing an application based on the REA
model is that the REA model exists on two separate levels of abstraction
(the application model and the metamodel).

As a general rule we should not mix two levels of abstraction in the
same source code. While it is possible to do so in programming languages
that support reflection, it is almost always the case that the reflection code
and the reflected code resides in different components.

We need to make a choice: If we implement the application model, we
will just have to map the concepts of the metamodel as well as possible to
the existing metamodel of the programming language (e.g. by using inheri-
tance to represent metamodel elements or by using attributes to describe
metadata). If we implement the metamodel however, the application model
becomes data and we are basically developing our own programming lan-
guage.

I can see the benefits of both approaches: I find that the first approach is
easy to explain and understand whereas most developers get scared by the
second approach. The second approach, however, results in a model that
captures the deep knowledge of the business model in a much more pro-
found way.

We will look into the approach of implementing the metamodel in chap-
ter An Aspect-Based Example Application at the end of Part II of this book,
but for now we will stick to implementing the application model.

3.2 Component Model

Let us start out by defining the components that we want to build our ap-
plication from. The dependencies between the different components are
shown in Fig. 93.

3.2 Component Model 131

Joe’s Web

Domain Model

REA Model

Data Access Layer

Database

OLAP

Fig. 93. Component model of the REA sample application

REA model defines the underlying REA model. Classes such as Order
and Customer will inherit from base classes defined in this component.
The REA model component will be designed with reusability in mind, so it
can be reused in other REA-based applications.

Domain model contains all the entities that make up Joe’s Pizzeria. In a
real-life application the domain model would contain everything including
purchase, production, salaries, etc., but in our small sample application we
will only model sales orders and customers. We will make the design rule
that all classes in the domain model must inherit from one of the base
classes in the REA model component.

Joe’s Web is the actual web site that the customers will be visiting when
they want to order pizzas. Joe’s web consists of a number of web pages
running on a web server. As a design rule we will not put any business
logic directly in this component. All the business logic will instead be
placed in the domain model and REA model components.

Data Access Layer is responsible for retrieving objects from the data-
base as well as storing objects in the database. The process of transforming
a domain object to its database equivalent is often referred to as O/R map-
ping. While O/R mapping tools exist, in the case of this simple web appli-
cation we will just be writing the code ourselves.

Database is where the data (orders, customers, etc.) gets stored. The da-
tabase is the only persistent component in the application, so if we want
our data to be available over time we need to put it in the database.

OLAP – In our sample application we would like to provide Joe with all
kinds of information about his business: What kinds of pizzas are the most
popular? Are sales going up or down? Etc. In my opinion an OLAP cube is
the ideal tool for this kind of information.

132 3 An REA-Based Example Application

Fig. 94. REA Model Component

3.3 The REA Model Component 133

3.3 The REA Model Component

Fig. 93 shows the REA model that we will be basing our application on.
As can be seen, the model is not a complete REA model. This is because
we don’t need concepts such as duality in our sample application. The
simplification of the REA model is a pattern in itself called MODELING
COMPROMISE.

Each object in the REA model is defined as an abstract base class. When
we later define our domain model, each of the domain objects is going to
inherit from one of these base classes. The exception to this rule is the
Event class, which does not have a domain counterpart.

As can be seen from the diagram, the Agent class has two fields. The
first field is the ID which is a unique identifier for the Agent class. The
main purpose of the ID field is to identify the agent record in the database
as well as to solve the ambiguity that would otherwise occur if two agents
were to have the same name. The Name field is also a kind of identifier of
the agent but it is less strict than the ID in that it is not necessarily unique.
On the other hand the Name is the identifier that humans use: “Did John
Doe receive his pizzas?” Joe might ask. Anyway, here is the code:

public abstract class Agent {
public int ID;
public string Name;

}

Just like agents, Resources contain an ID and Name. In addition a re-
source has a Value which is defined as the value in US dollars of a single
unit of the resource, i.e., the price of a single pizza:

public abstract class Resource {
public int ID;
public string Name;
public double Value;

}

The Contract class contains an ID field and two collections: A collec-
tion of increment commitments and a collection of decrement commit-
ments.

public abstract class Contract {
public int ID;
public List<IncrementCommitment> IncrementCommitments = …
public List<DecrementCommitment> DecrementCommitments = …

}

134 3 An REA-Based Example Application

First of all it is worth noting that the Increment Commitment class,
unlike the Agent, Resource and Contract classes, does not have an ID. This
is because commitments do not have identities – after all what is the dif-
ference between receiving ten dollars and receiving five dollars and then
another five dollars? Another thing worth noting is that the commitment
classes contain a fulfillment mechanism:

Once a certain commitment is fulfilled, the application can call the
commitment object’s Fulfill() method. This will cause the commitment to
change its Fulfilled field to true and will also cause the commitment to
generate an economic event based on its own information. Since the com-
mitment itself does not know what to do with this economic event, it will
pass it to the calling application using the EventCreated delegate.

public abstract class IncrementCommitment {
public Resource Resource;
public double Amount;
public Agent Provider;
public bool Fulfilled = false;
public event IncrementEventCreatedHandler EventCreated;

public void Fulfill() {
 Fulfilled = true;

IncrementEvent e = new IncrementEvent(this);
 EventCreated(e);
 }
}

Basically, decrement commitments are identical to increment commit-
ments except they have a recipient instead of a provider. While writing this
chapter I was debating with Pavel whether decrement and increment com-
mitments should actually be modeled as different classes or if they should
rather be merged into a single generic commitment class. In the end we
decided that the semantic difference between the two types of commit-
ments is so important to the whole REA model that they should be kept
separate.

The Increment Event and Decrement Event will be generated by the
REA model component whenever a commitment is marked as fulfilled by
calling its Fulfill() method.

public class IncrementEvent {
public DateTime Date;
public Resource Resource;
public double Amount;
public Agent Provider;

public IncrementEvent(IncrementCommitment commitment) {
 Date = DateTime.Now;
 Resource = commitment.Resource;

3.3 The REA Model Component 135

 Amount = commitment.Amount;
 Provider = commitment.Provider;
 }
}

Fig. 95. Domain Model Component

136 3 An REA-Based Example Application

3.4 The Domain Model Component

The diagram in Fig. 95 shows the domain model component. It is worth
noting that the model does not contain any associations between domain
classes. This is because all the associations are inherited from the REA
model component. It can also be seen that each domain class inherits from
a corresponding REA class.

A Customer is basically an agent. An Address field has been added so
that Joe will know where to deliver the Pizzas.

public class Customer : Agent {
public string Address;

}

Pizzas are resources.

public class Pizza : Resource {
}

The Currency class is needed because the REA model expects every
commitment and event to have a Resource. The Currency class represents
monetary value. In reality, only one type of currency will be used in the
application, namely US dollars, so we implement a singleton pattern.

public class Currency : Resource {
private Currency() {}

public static Currency USD {
get {

Currency usd = new Currency();
 usd.ID = 0;
 usd.Name = "USD";
 usd.Value = 1;

return usd;
 }
 }
}

An Order Line is a decrement commitment where Joe’s Pizzeria com-
mits itself to deliver a given number of pizzas of a specific type to a cus-
tomer.

public class OrderLine : DecrementCommitment {
}

A Payment is an increment commitment where the Customer commits
himself to pay Joe’s Pizzeria a certain amount of currency.

3.5 The Database 137

public class PaymentLine : IncrementCommitment {
}

The Order class is the only class in the domain model component that
adds something that could reasonably be called business logic. The order is
able to calculate the total amount (in USD) that the customer should pay
for his pizzas. The order can also add a payment line based on this total to
its incoming commitments.

public class Order : Contract {
public double Total {

get {
double total = 0;
foreach (OrderLine line in DecrementCommitments) {

 total += line.Amount * line.Resource.Value;
 }

return total;
 }
 }

public void AddPayment(Customer customer, Currency currency) {
 IncrementCommitments.Clear();

PaymentLine line = new PaymentLine();
 line.Amount = Total;
 line.Resource = currency;
 line.Provider = customer;
 IncrementCommitments.Add(line);
 }
}

All in all the domain model component consists of only 28 lines of code
(not including blank lines and closing brackets).

3.5 The Database

The database is designed to mimic the domain model as closely as possi-
ble, see Fig. 96. All fields have the same name and are of the same data
type as in the domain model. A few exceptions are necessary, however,
due to the nature of databases:

In the domain model order lines and payment lines are part of an order.
In the database this is modeled by adding an order ID to each order line
and payment line.
In the domain model resources, providers and recipients are references
to resource and agent objects. In the database, resource ID, provider ID
or recipient ID are foreign keys to the pizza and customer tables.

138 3 An REA-Based Example Application

Fig. 96. The database

3.6 The Data Access Layer

The data access layer contains a single static class with a number of meth-
ods for retrieving and saving data to the database, see Fig. 97.

These methods are extremely simple so I will not waste too much space
listing all the code. Here is a single example showing the code for the Get-
Pizzas() method:

public static Dictionary<int, Pizza> GetPizzas() {
Dictionary<int, Pizza> pizzas = new Dictionary<int, Pizza>();
using (SqlConnection connection = new SqlConnection("…")) {

 connection.Open();
SqlCommand command = new SqlCommand("select number, name,

 price from pizza", connection);
SqlDataReader reader = command.ExecuteReader();
while (reader.Read()) {

Pizza pizza = new Pizza();
 pizza.ID = reader.GetInt32(0);
 pizza.Name = reader.GetString(1);
 pizza.Price = (double) reader.GetDecimal(2);
 pizzas.Add(pizza.ID, pizza);
 }
 }

return pizzas;
}

3.7 Joe’s Web 139

Fig. 97. The data access layer

One of the interesting features of the data access layer is that it is re-
sponsible for saving the economic events generated by the commitments. It
does so by attaching an event handler to the order lines and payment lines
in the GetOrders() method:

public static Dictionary<int, Order> GetOrders() {
…
…
OrderLine line = new OrderLine();
order.DecrementCommitments.Add(line);
line.EventCreated +=

new DecrementEventCreatedHandler(OrderLine_EventCreated);
…
…
PaymentLine line = new PaymentLine();
order.IncrementCommitments.Add(line);
line.EventCreated +=

new IncrementEventCreatedHandler(PaymentLine_EventCreated);
…
…
}

static void OrderLine_EventCreated(DecrementEvent e) {
 SaveDecrementEvent(e);
}

static void PaymentLine_EventCreated(IncrementEvent e) {
 SaveIncrementEvent(e);
}

3.7 Joe’s Web

Now that all the underlying components are in place we are ready to de-
velop the user interface.

140 3 An REA-Based Example Application

The order web page is developed in ASP.Net and uses the page’s View-
State to store the order and customer objects between post backs. This is
extremely convenient when you base your development on a domain
model.

public partial class CreateOrder : System.Web.UI.Page {
Order Order;
Customer Customer;

protected void Page_Load(object sender, EventArgs e) {
if (!IsPostBack) {

 Order = new Order(Facade.GetNextOrderID());
 OrderNumberLabel.Text = Order.ID.ToString();
 Customer = new Customer(Facade.GetNextCustomerID());

foreach (Pizza pizza in Facade.GetPizzas().Values) {
ListItem item =

new ListItem(pizza.Name, pizza.ID.ToString());
 ResourceList.Items.Add(item);
 }
 ViewState.Add("order", Order);
 ViewState.Add("customer", Customer);
 } else {
 Order = (Order) ViewState["order"];
 Customer = (Customer)ViewState["customer"];

foreach (OrderLine line in Order.DecrementCommitments) {
 AddOrderLineTableRow(line);
 }
 }
 }

If the user presses the Already a customer link, see Fig. 92, the web
page will search the database for a customer with the correct name and
then use that customer as the recipient for the order lines. The web page
will also display the customer’s address information:

protected void AlreadyCustomer_Click(object sender, EventArgs e) {
foreach (Customer customer in Facade.GetCustomers().Values) {

if (customer.Name == NameTextBox.Text) {
 Customer = customer;
 AddressTextBox.Text = customer.Address;
 ViewState.Add("customer", Customer);

break;
 }
 }
}

When the user presses the add to order button, the web page will gener-
ate an order line based on the information that the user has entered and
then add that order line to the order object:

3.8 The Fulfillment Page 141

protected void AddToOrder_Click(object sender, EventArgs e) {
OrderLine line = new OrderLine();

 line.Amount = double.Parse(QuantityTextBox.Text);
 line.Resource = Facade.GetPizzas()[ResourceList.SelectedValue];
 line.Recipient = Customer;
 Order.DecrementCommitments.Add(line);
 AddOrderLineTableRow(line);
 ViewState.Add("order", Order);
 TotalAmountLabel.Text = Order.Total.ToString("#.00");
}

The final piece of code that we need for our web page is the code behind
the Submit your order button:

protected void Submit_Click(object sender, EventArgs e) {
 Order.AddPayment(Customer, Currency.USD);
 Customer.Name = NameTextBox.Text;
 Customer.Address = AddressTextBox.Text;

Facade.SaveCustomer(Customer);
Facade.SaveOrder(Order);

 Response.Redirect("MainPage.aspx");
}

Now everything is in place and Joe is ready to receive orders from his
customers.

3.8 The Fulfillment Page

Once the customer has submitted the order, Joe needs to keep track of it.
He needs to know whether the customer has received his pizzas and
whether he has paid for them or not. For this purpose the system contains a
fulfillment page, illustrated in Fig. 98.

142 3 An REA-Based Example Application

Fig. 98. The fulfillment web page

By checking the checkboxes, Joe can mark a specific order line or pay-
ment line as Fulfilled. The fulfillment page supports scenarios where the
customer pays up front for his pizzas as well as scenarios where the cus-
tomer pays on delivery. At least in the area where I live, both these scenar-
ios occur regularly.

Less realistic is the fact that Joe can partly fulfill an order, but only by
providing all the pizzas of a specific type at once. This flaw is caused by
the simplified fulfillment mechanism we implemented in the REA model.

Behind the scenes the fulfillment page is using the same domain model,
data access layer and database as the order web page. When Joe presses
the Save Changes button, the web page runs through all checkboxes and
calls the associated order line or payment line’s fulfill method if necessary:

3.9 The OLAP Cube 143

protected void SaveChanges_Click(object sender, EventArgs e) {
for(int i=0; i < OrderLineTable.Rows.Count; i++) {

CheckBox checkbox =
 (CheckBox) OrderLineTable.Rows[i].Cells[3].Controls[0];

if (checkbox.Checked &&
 !Order.DecrementCommitments[i].Fulfilled) {
 Order.DecrementCommitments[i].Fulfill();
 }
 }

for (int i = 0; i < PaymentLineTable.Rows.Count; i++) {
CheckBox checkbox =

 (CheckBox) PaymentLineTable.Rows[i].Cells[3].Controls[0];
if (checkbox.Checked &&

 !Order.IncrementCommitments[i].Fulfilled) {
 Order.IncrementCommitments[i].Fulfill();
 }
 }

Facade.SaveOrder(Order);
 Response.Redirect("MainPage.aspx");

}

This eventually causes decrement events and increment events to be
stored in the database, see Fig. 99:

Fig. 99. Decrement event table

3.9 The OLAP Cube

Now it is time to generate some management reports based on our event
data.

144 3 An REA-Based Example Application

To make it really simple let us just add a simple Microsoft Access pivot
table on top of each of the event tables. While this is not a real OLAP cube
it still provides us with the same basic functionality.

The definition of the cube based on decrement events is in Fig. 100.

Fig. 100. Definition of the decrement event table

We can use this cube to get simple sales statistics based on Joe’s pizza
sales.

Fig. 101. Pizza sales

It is probably easier to see the results if we present them as a bar chart in
Fig. 102.

3.9 The OLAP Cube 145

Fig. 102. Pizza sales bar chart

Based on these figures Joe should probably remove the Pizza Pollo e
Pesto from his menu and instead consider adding more vegetarian pizzas.

We can also have a look at the increment events in Fig. 103.

Fig. 103. Cash receipts

Again let’s look at the data as a bar chart in Fig. 104.

146 3 An REA-Based Example Application

Fig. 104. Cash receipts as bar chart

All in all it looks as if things are going well for Joe: sales have been
steadily increasing over the year.

3.10 Conclusions

Hopefully this example application has shown that it is indeed simple to
develop an REA-based business application. The main benefits of doing so
are:

By basing the domain model on a proven and well-understood core
model (the REA model) we minimize the risk of design flaws in our ap-
plication. By demanding that all domain classes inherit from base
classes in the REA model we are able to perform a design-time check
that the domain model is consistent.
Due to the fact that we base our domain model on a model that covers a
larger set of business cases than the domain model itself, it is relatively
easy to extend the domain model at a later time. If for instance Joe de-
cides to track usage of raw materials for making pizza, we know that
this will easily fit into the model.

3.10 Conclusions 147

Because much of the business logic resides in the reusable REA model
we can minimize the development effort. In the example application we
were able to create a complete domain model for the pizza sales applica-
tion with only 28 lines of code.

While I strongly recommend that you start using the REA-model there
are of course also some caveats that you need to take into consideration:

If you are developing an application that really is not about resources,
events and agents (for instance a document management system), you
may end up spending a lot of time trying to “shoehorn” the application
into the REA model. It is important to decide early on whether the REA
model is applicable.
While the REA model is very powerful it is also very abstract. If you try
to explain your design to a customer or fellow employee, you may find
that explaining the underlying REA model is difficult. Trying to hide the
fact that you are basing your design on an REA model may also be a
bad idea, because major design decisions are based on the decision to
use REA (e.g., why should the customer ID be placed on each order line
instead of on the order itself).

Part II Behavioral Patterns

The previous part, Structural Patterns, discussed the structure of a business
application, which conforms to the laws of the business domain, consisting
of REA entities and their relationships. To build a useful business applica-
tion, this structure is only one of the things an application developer has to
determine. Users of business applications usually require additional func-
tionality, such as serial numbers, accounts, price calculations, and conver-
sions between units of measure. This functionality is essential in some ap-
plications, but it might not be required in others. All depends on the users
of a business application, actual configuration of an application, and the
common practices in their businesses.

In this part, Behavioral Patterns, we describe how the REA model can
be extended to support specific functionality that originates in user re-
quirements.

REA Structure at Policy Level
What Could, Should or Should not Happen

REA Structure at Operational Level
What Has Happened

Behavior

IDENTIFICATION
identity of entities

CLASSIFICATION
grouping

LOCATION
where events occur

POSTING
keep history

ACCOUNT
retrieve history

DUE DATE
deadlines

MATERIALIZED
CLAIM
invoices

RECONCILIATION
match transactions

DESCRIPTION
external

NOTE
internal

NOTIFICATION
message

VALUE
units of measure

Fundamental Skeleton

Extended Skeleton

Customizable Functionality

INVENTOR’S PARADOX
how to discover new behavioral patterns

4 Cross-Cutting Concerns

4.1 Behavior May Not Be Localizable Into REA Entities

Units of functionality that extend the REA model are usually not localiz-
able into a single REA entity. An example is illustrated in Fig. 105. This
example shows the economic resource Vehicle, which belongs to the Vehi-
cle Category, and is used in the economic events Trip.

Fig. 105. Behavioral patterns often crosscut REA entities

A License Plate Number of a vehicle is an attribute of the economic re-
source Vehicle. The License Plate Number is usually not a random num-
ber. It is constructed using a License Plate Rules, which is a property of
Vehicle Category (for example, numbers of police cars, military cars, and
diplomatic cars are constructed using different rules than numbers of other
cars). The property License Plate Rules contains rules specifying the
uniqueness of the License Plate Number, its format, its dependency on
previous numbers or other attributes, and so on. Therefore, the unit of
functionality of a License Plate Number Series is present on two REA enti-
ties, the resource and the resource group, and the number is constructed by
mutual collaboration between the part that resides on the resource and the
part that resides on the group.

Likewise, a Mileage of a Vehicle is calculated as the aggregated number
of the trip Distances the vehicle traveled. As Trip is an economic event,
the Odometer is a unit of functionality present on two REA entities, the
economic resource and the economic event.

152 4 Cross-Cutting Concerns

It is still useful to think about a License Plate Number Series, and about
an Odometer as single units of functionality, but these units span several
REA entities.

We will use aspect-oriented programming as a conceptual framework
and a convention of thought for modeling the crosscutting modules of
functionality. Aspect-oriented programming is one of the mechanisms for
describing the crosscutting features and manipulating them as modular
units. Aspect-oriented programming is based on the ideas of Gregor Kicza-
les, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin, (Kiczales 1996). This group
at the Palo Alto Research Center, a subsidiary of Xerox Corporation, de-
veloped a general purpose aspect-oriented language called AspectJ, an ex-
tension of the Java programming language with aspect-oriented features.
Many other research centers have developed other aspect-oriented lan-
guages, both general purpose and specific to a certain domain.

At the end of Part II of this book we illustrate two ways of implement-
ing the behavioral patterns, one in C# code, and the other using a model
framework. Nevertheless, the behavioral patterns, as described in this
book, can be also used without a specific implementation in mind, or im-
plemented in another way.

To stay independent of any particular implementation, we call Aspects
the crosscutting units of functionality, such as License Plate Number Se-
ries, and Aspect Elements the units that are present on REA entities, such
as License Plate Rule, License Plate Number, Mileage, and Distance.

4.2 Framework-Based Approach

Aspect-oriented languages that are not framework-based, such as AspectJ,
express the structure of a software application in the form of code in the
programming language, and the crosscutting concerns, or aspects, are also
expressed as code. During compilation, both the application code and the
aspect code are combined together in a process called weaving; see
Fig. 106.

4.2 Framework-Based Approach 153

Fig. 106. Aspect-oriented programming at the code level (not framework-based)

Keeping in mind requirements such as extensibility and configurability,
a disadvantage of such programming languages is that the code has to be
weaved (which means recompiled) every time the functionality of an ap-
plication (expressed as application code or aspect code) changes. The con-
sequence is that upgrading an application is complicated and expensive.

Furthermore, since some or all functionality of an object is provided in
the aspect code, it is impossible for the weaver to guarantee a system-wide
quality for an application, because the weaver has no way of knowing what
the aspect code does.

To satisfy the requirements for extensibility, configurability, and up-
gradeability, we use the framework approach to model and implement the
aspects. Every aspect is represented at two levels of abstraction, the Aspect
type level and the Application model level; see Fig. 107.

We will use a simplified version of the IDENTIFICATION PATTERN as
an example. The IDENTIFICATION PATTERN encapsulates business
logic for providing identity to REA entities, such as serial numbers and
names. Details about the identification pattern are described in the
IDENTIFICATION PATTERN chapter.

The Aspect Type level specifies the types of the aspects, and metadata
that can be applied to the aspects in the application model. This level en-
capsulates the business logic of the aspect, and specifies the configuration
properties, which can be set by application developers. In the example il-
lustrated in Fig. 107, the Identification Aspect consists of two element
types, Identifier Type and Identifier Setup Type. The cardinality of the
composition indicates that instances of these types (i.e., Identifier and
Identifier Setup) can be configured in the application model several times.
These two elements are related by a one-to-many relationship, which indi-
cates that for each configured identification aspect in the application
model, for one Identifier there can be exactly one Identifier Setup, and for
one Identifier Setup there can be one or more Identifiers.

154 4 Cross-Cutting Concerns

 The Application Model level specifies the runtime attributes that can be
set by the users of business applications or automatically by the system.
The application model level also specifies which aspects are configured on
which REA entities; in Fig. 107 the REA entities are shown by dashed
lines, to indicate that they are not part of the aspect. An REA entity of a
type group can contain zero or more Identifier Setup aspect elements, and
any REA entity can contain zero or more Identifier elements. For each
Identifier instance at runtime, there is exactly one Identifier Setup instance;
for each Identifier Setup instance at runtime, there can be zero or more
Identifier instances.

Types of aspect
elements that can be
configured on REA
entities

ID rule
Last Number

Identification String

0..*

1

Name
AutoNumber (Y/N)
Unique (Y/N)
Mandatory (Y/N)

0..*

0..*

1..*1..*

Name Name

«instanceOf»
«instanceOf»

Any REA entity can have
several identifiers

Name of the Aspect Pattern
Configuration
properties of the
aspect type

Elements of the
aspect that can be
configured on REA
entities

REA Entities on which
aspect elements can be
configured

Properties that
can be set at
runtime

1..* 1

Name of the
aspect type

Fig. 107. Aspect pattern in the framework approach

4.2 Framework-Based Approach 155

In the examples illustrating application models with aspects, we use the
notation in Fig. 108. The Aspect Elements are shown as rectangles with
thick line; their runtime properties are shown similarly, as UML attributes.
Properties of the aspect element types (i.e. the properties whose values are
set at the aspect type level) are shown in the name compartment of the as-
pect. Values of the properties of the aspect type are shown as text close to
the line connecting the aspect elements, similarly as UML attributes; for
example, ‘Mandatory = yes’.

Last Number
ID Rule

«Identifier Setup»

Identification String

«Identifier»

Aspect element type name

Aspect element type name

Aspect element

Aspect element

«Identification»

Mandatory = yes
Unique = yes
AutoNumber = yes

Aspect type name

Aspect pattern name

Aspect pattern properties

Properties set at runtime

Properties of the
element type set at
design time are
shown in the upper
compartment

Fig. 108. Notation used for aspects in application models

Model in Fig. 109 illustrates a fragment of an REA model with two
REA entities, a contract Sales Order and a group Orders. Application de-
velopers would like to implement sales order number on the Sales Order
entity. They decide to configure the identification aspect on the Sales Or-
der. The result is illustrated in Fig. 110.

«contract»

«grouping»

«group»

Fig. 109. Fragment of an REA model without aspects

156 4 Cross-Cutting Concerns

The Identification Aspect Pattern has the name Number Series. The con-
figuration parameters Mandatory, Unique, and AutoNumber are all set to
yes. The Identifier Setup element is called Order Number Setup, and the
Identifier is called Order Number.

«contract»

«grouping»

«group»

Last Number
ID Rule

«Identifier Setup»

Identification String

«Identifier»

REA entities
with configured
Identification
Aspect

Properties that can
be set at runtime

Property that can be
set at runtime

Type of aspect element

«Identification»

Mandatory = yes
Unique = yes
AutoNumber = yes

Name of aspect element

Type of aspect element

Configuration properties
set at design time

Name of Aspect
Type

Name of Aspect Pattern

Name of aspect element

Fig. 110. Fragment of an REA model with identification aspect

Advantage of a system with explicitly modeled aspect types is that
software business applications are much easier to configure, customize and
upgrade than if the aspects were to be represented only as code in a pro-
gramming language.

Configuration of software business applications using the aspect pat-
terns is basically reduced to creating an REA model, setting the configura-
tion parameters of aspects, and specifying which aspects are present on
which objects. This can be done without writing any code in a program-
ming language.

Software applications are easy to customize, as the customization task
basically comprises setting up the configuration parameters of the aspects.

Furthermore, software applications are easy to upgrade, because all ap-
plication logic is encapsulated in the elements at the aspect type level, and
it can be extended independently of the configured application model. The
upgrade of the software application basically means replacing the elements
at the aspect type level with elements with upgraded functionality. The

4.3 There Is No Complete List of Behavioral Patterns 157

framework developer designs the interface (the configuration properties
and the corresponding behavior) that the elements at the aspect type level
expose. If the upgraded elements support the old interface, the software
applications can be upgraded without reweaving or recompiling the appli-
cation.

Even if the upgraded elements are not backwards compatible (backward
compatibility is considered anti-pattern by some practitioners), it is possi-
ble to write an upgrade script that modifies the configured applications to
support the upgraded elements.

Quality of the software applications is easier to control, as all function-
ality of business applications is encapsulated in a framework, and is there-
fore tested by framework developers. The framework developers, who
provide the elements at the aspect type level, have full control over what
application developers may do with their aspect elements. In other words,
providing application developers a domain-specific modeling language re-
duces the number of errors the application developers can make, compared
to the situation in which the application developers write code in a general
programming language.

4.3 There Is No Complete List of Behavioral Patterns

While with the structural patterns our aim was to find the minimal, yet
complete set of abstractions covering the business domain, this is not pos-
sible with behavioral patterns. Users of business applications will always
need new features, and behavioral patterns provide a mechanism to add
new features to a business application without changing its fundamental
structure.

There are behavioral patterns waiting to be discovered. This section de-
scribes the patterns we came across in building our business solutions, but
it is not a complete list of all patterns that might be needed in any line of
business. As the REA structural patterns define more or less a complete set
of concepts, if application developers identify user requirements for new
functionality, they would likely be either new behavioral patterns which
crosscut the REA entities or features in a domain other than the business
domain.

5 Patterns

5.1 Identification Pattern

Barcode is a machine readable strip for automatic identification of items,
by means of printed bars of different widths

Context

People refer to real or imaginary things by their names. We name things to
identify them, so we can refer to them by their names and not just point to
them and say ”this!”. By naming, we give things identities, but in real life
they are not often unique. Many things have more than one name, and
sometimes a single name can refer to different things, which is fine as long
as everyone who uses that name knows what thing it refers to. In business,
people use serial numbers, production numbers, civil registration numbers,
and names.

Problem

How do we specify the identity of things represented by REA entities?

Forces

The solution needs to balance the following forces:

160 5 Patterns

An identity is a given feature; it is not an intrinsic part of the objects and
things. Therefore, an REA application model must specify whether there
is a business reason requiring REA entities to have a distinct identity,
and how that identity is modeled. We could omit modeling identity of
an entity, but then we could distinguish different instances of this entity
only by the values of their attributes.
Users of business applications do not necessarily require that all REA
entities have an explicit identifier. For example, users of business appli-
cations might not be interested in managing the identifiers of sales order
lines.
Some identifiers are unique in the universe, such as the GUID (Global
Unique Identifier); some are not unique, such as the first name and last
name of a person. Some identifiers are unique within a certain group,
such as a serial number, which is unique within the group of entities that
belong to the same number series.
There are specific rules on how to construct identifiers. For example, the
ISBN (International Standard Book Number) or the numbers of major
credit cards are constructed in a way that enables verifying, using a sim-
ple calculation algorithm, whether the number is valid.

Solution

The Identification Aspect Pattern can be used in situations in which appli-
cation developers want to specify the identity of REA entities.

In the REA application model, the Identification Aspect consists of two
elements. The Identifier element represents the name or number of an REA
entity. The Identifier Setup element specifies the rules for creating the
Identifiers.

The Identifier Setup is often configured on group of REA entities that
share the same rules for creating identifiers, for example, on a group that
belongs to the same number series. The Identifier can be configured on any
REA entity that needs to be identifiable, including the groups. As not all
REA entities are parts of some group, the Identifier Setup is often omitted
from the model, or is implicit in a software application, for example, as a
system table.

5.1 Identification Pattern 161

Fig. 111. Identification aspect in the application model

Design of the Identification Pattern

The aspect type level encapsulates the business logic of the aspect and con-
figuration parameters, which can be set by application developers. At the
aspect type level, the Identification Type defines the Name of the type of
identification, as well as other attributes. AutoNumber is a Boolean func-
tion that can be set on or off to indicate whether the Identifier can be
automatically generated by the identification aspect or not; automatically
generated number is often referred to as a number series. Unique is a Boo-
lean function that can be set on or off to indicate whether or not the Identi-
fier is required to be unique at runtime. Mandatory is a Boolean function
that can be set on or off to indicate if the Identifier must be defined at run-
time or can be undefined.

The Identification Type Aspect has two elements, Identifier Type and
Identifier Setup Type. These elements contain business logic for interpret-
ing the ID rules, and logic for creating and validating Identifiers. They do
not have any configuration parameters; just serve as metadata for the Iden-
tifier and the Identifier Type at the application level.

The rules for creating new Identifiers can vary from simple series with
linear increments to rules that allow for validity checks of the identifica-
tion strings, such as credit card numbers. Legislation in some countries re-
quires that numbers of some business documents consecutive, without
gaps, which imposes an extra requirement on how the number is con-
structed. If an REA entity has been created by omission and deleted after
another REA entity of the same series has been created, the ID Rule must
be able to identify the gap in the series and reuse the number of the deleted
document.

The application model level specifies the runtime attributes that can be
set by the users of the business application, or automatically. At the appli-

162 5 Patterns

cation model level, the Identifier element is configured on the REA entity
that should have some form of identity. The Identifier contains the ID
String, which provides an identity to each REA entity instance.

The Identifier Setup is usually configured on a group of REA entities
that share the same ID rule for creating or validating an Identifier. The ID
Rule determines how the identification strings are created (users of busi-
ness applications often use combinations of letters and numbers). The ID
Rule can also be used for validating the identification strings entered
manually by the users of the business application. If the Identification Type
aspect is an AutoNumber, the Identifier Type also has an attribute Last ID,
which defines the last used identification string in the series.

ID Rule

ID String

0..*

1

Name
AutoNumber (Y/N)
Unique (Y/N)
Mandatory (Y/N)

0..*

0..*

1..*1..*

Name Name

«instanceOf» «instanceOf»

1..* 1

Last ID

Fig. 112. Design of the identification pattern

5.1 Identification Pattern 163

Examples

The Social Security Number (SSN) of an employee is an identification that
is not an auto-number, is unique, and is not mandatory. The Identifier
Setup has the name SSN Numbering Scheme, and contains an ID Rule that
determines how the social security number is constructed or verified. The
Identifier has the name Social Security Number, and its ID String at run-
time contains the social security number.

«economic agent»
Employee

«grouping»

«Identification»
Social Security Number
Mandatory = no
Unique = yes
AutoNumber = no

«group»
Citizens

ID Rule

«Identifier Setup»
SSN Numbering Scheme

ID String

«Identifier»
Social Security Number

Fig. 113. Social Security Number

Sales Order Number is an identification that is an auto-number, is unique,
and is mandatory. As the Sales Order Number is an auto-number, the Iden-
tifier Setup element contains the attribute Last ID.

Fig. 114. Sales order number

164 5 Patterns

Product Serial Number is an identification that is an auto-number, is
unique, and is mandatory. The configuration of Product Serial Number is
similar to that of Sales Order Number in Fig. 114; Identifier is configured
on the economic resource Product, and Identifier Setup is configured on a
group of Products that belong to the same series.

Employee Name is an identification that is not an auto-number, is not
unique, but is mandatory. First name, middle name, last name and nick-
name share the same ID Rule specified by Employee Name Setup.

Fig. 115. Employee name

Resulting Context

Sometimes, users of business applications use phone number, e-mail ad-
dress, or Internet address as identifiers of their trading partners. These
numbers and addresses have multiple and different semantics. Phone num-

5.1 Identification Pattern 165

ber can also be used as a contact address, e-mail address as a contact ad-
dress and destination location (for sending electronic documents and prod-
ucts), and Internet address as a description of the trading partner. In such
cases, different aspects will contain or refer to the same data (both identifi-
cation and notification will contain or refer to the same phone number).

There are several international standards specifying Identification
Strings and ID rules for economic resources and economic agents in vari-
ous lines of business. Examples are European Article Numbering (EAN)
for industrial products, International Standard Book Number (ISBN) for
books, International Standard Serial Number (ISSN) for periodicals, and
International Standard Music Number (ISMN) for printed music publica-
tions. For companies, the Data Universal Numbering System (DUNS) is
used. References to these standards can be found, for example, in (Arlow,
Neustadt 2003).

166 5 Patterns

5.2 Classification Pattern

Classification of a washing machine into an energy consumption class

Context

Users of software applications often need to divide REA entities, such as
economic resources, into certain categories. The example illustrated above
shows a classification of washing machines into categories A-G according
to energy consumption.

Such classification is essentially grouping, already described as a part of
GROUP PATTERN in Part I of this book. The reason we describe classifi-
cation as a structural pattern is that classification adds specific functional-
ity to the grouping structure. There are other patterns that add different
functionality to the grouping structure, for example BUDGET and
INVENTORY (not included in this book).

Problem

How do we model the hierarchy of classification categories, and classify
REA entities into the categories of the classification hierarchy?

Forces

Application designers have to consider the following forces:

There is often a hierarchy of categories, and a REA entity can be classi-
fied in more than one category simultaneously. For example, if a classi-

5.2 Classification Pattern 167

fication hierarchy for furniture contains category sofas with two sub-
categories, leather sofas and sleeping sofas, there can be an economic
resource (sofa), which can be both a sleeping sofa and a leather sofa.
Often, two or more REA entities can use the same classification hierar-
chy. For example, a software support engineer can be classified accord-
ing his qualification as a Microsoft Windows supporter, or, more spe-
cifically, a Windows 2000 supporter or Windows XP supporter. Thus,
the supporter can be classified using the same classification hierarchy as
is used to classify the software products.
Sometimes, it is necessary to match REA entities that are classified in
the same categories. For example, the users of a business application
need to identify a supporter whose qualification corresponds to a prod-
uct category.
In some cases, users of business applications can classify an REA entity
themselves, in other cases the category depends on the values of some
attributes of the REA entity. In such cases, the REA entity should de-
termine its category automatically, and change it if the values of the at-
tributes change. For example, a customer might be classified as a pre-
ferred customer if the volume of sales to him reaches a certain level, or
as an ordinary customer if the sales volume drops below that level.

Solution

The classification aspect in the application model has two elements. The
Member element on an REA entity classifies the REA entity into a Cate-
gory. The Category element defines a node in the classification hierarchy.
The Category element is usually configured on a Group entity, and the
Member element can be configured on any REA entity; see Fig. 116. The
Category has a reference to a parent Category, and thereby describes a hi-
erarchical structure; see Fig. 117.

An REA entity can be a member of several categories simultaneously.
These categories can be part of a single hierarchy, but also of different
classification hierarchies.

168 5 Patterns

grouping

Fig. 116. Classification pattern

Design of the Classification Pattern

The aspect type level encapsulates the business logic of the aspect and con-
figuration parameters, which can be set by application developers. At the
aspect type level, the Classification Aspect defines the Name of the classi-
fication hierarchy. The Auto-Classification is a Boolean parameter that can
be set on or off to indicate whether or not the classification aspect will
maintain the classification automatically based on the Membership Rule of
the Auto-Category. The classification Aspect has two elements, Category
Type and Member Type. The Member Type element has a Multiple Select
parameter that can be set on and off to indicate whether the REA entities at
the application level with an instance of this Member can be classified into
several categories or only into one. The Category Type element defines a
Name of the node type in the classification hierarchy.

The application model level specifies the runtime attributes that can be
set by the users of a business application or automatically by the business
logic. At the application model level, the Category represents a node in the
hierarchy of categories. The Category is usually contained in the Group
entity. Each node has a reference to a parent node, and thereby describes a
hierarchy of categories. A Category has the attribute Name, which speci-
fies the name of the category. If the category is an Auto-Category, the
Membership Rule specifies the rule that enables the classification aspect to
create links between a Member and a Category dynamically, based on the
values of the Discriminator attribute of the Member. For example, if the
Discriminator of a Member is Age, the category with ‘Name = Minors’ has
the membership rule “Age is less than 18 years.”

A Member element can be configured on any REA entity, and has two
methods. The Is (Category) method allows the business logic to ask at run-

5.2 Classification Pattern 169

time if the REA entity with this member is classified as a specific Cate-
gory. The method IsIn (Category) indicates whether the member is classi-
fied in a subcategory of a specific Category. If the member is an Auto-
Category member, the Discriminator attribute is used by the Membership
Rule to automatically determine the Category of the member.

Fig. 117. Design of the classification pattern

170 5 Patterns

Examples

The Tax Group of an economic resource is a classification that is not an
Auto-Classification, because users of business applications explicitly spec-
ify a tax group for each product type individually, according to local tax
regulations. The tax group classification does not have hierarchy (its hier-
archy has only one level). The Name attribute of the Category element
contains the name of the tax category. For example, in Denmark, the cate-
gories are “No tax,” and “25% Tax.” The Member element does not have
properties that can be set at runtime, and application developer does not
specify the Name of the Member Type.

«resource type»

grouping
«Classification»

Auto-Classification = no

«group»

Name

«Category»

«Member»
Member type element
has no name and
member element has no
properties

Category type element
has no name

I.e. ”NoTax”, or ”25% Tax”

Fig. 118. Tax group

Customer Group is a classification of the customers according to their
line of business. The configuration is similar to the configuration shown in
Fig. 118. The Member element is configured on the economic agent Cus-
tomer, and the Category is configured on the Customer Group. The cate-
gories of the Customer Group can be “Agriculture,” “Insurance,” “Min-
ing,” “Educational Institution,” etc.

Qualification is a classification of employees according to their skills.
Qualification is usually not an Auto-Classification, and is hierarchical.

Age Classification is a classification of customers according to their age;
see Fig. 119. The Age Category is an Auto-Classification. For example, if
a customer’s age is less than 18 years, the customer belongs to the ‘mi-
nors’ category; customers over 18 years belong to the ‘adults’ category.
The Discriminator attribute of the Member is a reference to the State prop-
erty of the DUE DATE PATTERN Age; the membership rule of the ‘mi-
nors’ category is ‘Discriminator == Upcoming’; the membership rule of
the ‘adults’ category is ‘Discriminator == Expired’. A customer’s age
changes over time, and if it becomes 18 years, the Due Date Age changes

5.2 Classification Pattern 171

its state from Upcoming to Expired, and consequently, the Classification
aspect changes the customer’s category from the minors category to the
adults category.

«economic agent»

«group»

«grouping»

«Classification»

Auto-Classification = yes

Name
Membership Rule

«Category»

Discriminator

«Member»

Date
Duration
State

«Due Date»
«dependsOn»

Fig. 119. Age classification

Runtime snapshot of the age classification example is shown in
Fig. 120. There are two instances of the Age Group entity; one has an in-
stance of the Category aspect with the name ‘minor,’ and the other has it
with the name ‘adult’, with corresponding membership rules. The Cus-
tomer has configured two aspects. The Due Date aspect determines the
age of customer as higher than 18 years. The Member element of the Age
Classification aspect contains a reference to the State property of the Due
Date aspect. The value of State determines that a link (an instance of the
grouping relationship) exists between customer and the ‘Adult’ age group.

172 5 Patterns

«group»
: Age Group

«group»
: Age Group

«economic agent»
Customer

«grouping»

«Classification»
Age Classification
Auto-Classification = yes

Name = ”Minor”
MembershipRule=”Discriminator==Upcoming”

«Category»
Age Group

Discriminator = Age.State

«Member»
Age Group Member

Date = 2 February 1994
Duration = 18 Years
State = Expired

«Due Date»
Age

Name = ”Adult”
MembershipRule=”Discriminator==Expired”

«Category»
Age Group

Fig. 120. A snapshot of the age classification at runtime

Resulting Context

The Age Category is often used for specifying policies that originate in le-
gal regulations.

Although the REA entities belong to different categories, they may
share the same business logic. In many situations, it is what applications
designers intend. However, if the instances of REA entities that belong to
different categories should also have very different business logic, a better
solution would be to model them as different REA entities, rather than as
one entity with a classification aspect.

The design described in Solution in Detail enables users of business ap-
plications to create new categories in existing classification hierarchies,
and classify REA entities into these categories. However, only application
designers (not end users) can create new kinds of classification hierarchies.
This is suitable for most applications we came across, because a new clas-
sification hierarchy in a sense changes the application design. In the cases
where the users of business applications require the creating of new classi-

5.2 Classification Pattern 173

fication hierarchies at runtime, the solution must either be modified by
adding the Classification Type aspect element at the application model
level, or give the users of business applications application development
rights.

If a hierarchy of categories is needed in a business application, creating
a hierarchy is a nontrivial task, and creating a classification system usually
needs the help of a specialist.

Categories are often used to specify policies (see the POLICY
PATTERN). Categories enable users to introduce more business knowledge
into a business application, which has both benefits and drawbacks. The
drawback is that the business knowledge in the software system is some-
times hard to create and needs maintenance as the business changes. The
benefit is that a software application that is aware of the business knowl-
edge can more efficiently guide and help its users.

174 5 Patterns

5.3 Location Pattern

Location is a point in space

Context

Most economic events take place in time and space. For some economic
events, the location is an essential attribute characterizing them. Shipment,
for example, is an economic event in which an economic resource is
moved from one location to another. Users of business application are in-
terested not only in departure and destination, but often also in the actual
location of the economic resource during the economic event.

Problem

How do we specify where the economic events occur?

Forces

We need to balance the following forces when creating the model:

Economic resources that are physical in nature are usually located at
specific places in the world. Users of business applications would like to
know where a resource is.
Information modeled as an REA economic resource also has location.
Information is always stored on a medium that has a location, and in-
formation can be transferred from medium to another.
Economic events contain historical information about changes of fea-
tures of economic resources or transfers of rights to these resources.
These changes and transfers occur both in time and space.

5.3 Location Pattern 175

Economic resources can change their locations as a result of economic
events or by forces outside of the scope of the application model. If an
economic event changes the location of the resource, users of business
applications would like to plan, monitor, and control changes of loca-
tions of the resources.

Solution

In the REA application model, the Location is an aspect consisting of two
elements, Position and Route, see Fig. 121. The Position element specifies
the actual position, and the Route element that represents the changes of
the Position. The Position element is usually configured on an economic
resource; and the Route element can be configured on a commitment,
which specifies the indented route, or on an economic event, which speci-
fies the actual route.

Fig. 121. Location pattern

Design of the Location Pattern

The aspect type level encapsulates the business logic of the aspect and con-
figuration parameters, which can be set by application developers. At the
aspect type level, the Location Aspect defines the Name of the location as-
pect. The location aspect has two element types, the Position Type and the
Route Type, both having properties defining their names. The Route Type
has a method DisplayMap() that displays the actual route and navigation
instructions.

The application model level specifies the runtime properties of the as-
pect elements. At the application model level, the Position element has an
attribute Actual Position which contains the actual position of the resource.
The Route element specifies a route segment that represents a change in

176 5 Patterns

the resource location. The Route element contains the properties Origin,
Destination, and Distance.

Origin
Destination
Distance

Actual Position

1

0..*

Name

0..*

0..*

Name

DisplayMap()

Name

«instance of» «instance of»

1
1..*

Fig. 122. Design of location pattern

Examples

The example in Fig. 123 illustrates a model of the location pattern config-
ured as a Shipment Address. The route segment element is configured on
the Shipment economic event; the Destination property represents the final
address. The Position element is configured on the Item; the Location
property represents the actual location of the Item.

5.3 Location Pattern 177

Origin
Destination

Distance

«economic resource»

stockflow Name = Shipment Address

Name = Item Location

«economic event»

Location

Name = Shipment Route

Fig. 123. Shipment address

The location pattern can be used to model an itinerary that consists of
several route segments. The itinerary is essentially a schedule. There are
several ways to construct the REA model for an itinerary, depending on
the level of detail of information the users of business application would
like to plan, monitor, and control. We will present one possible design.
The whole route is represented as an increment commitment, Transport,
and its Route aspect element contains the origin and final destination of the
economic resource Cargo. The decrement commitment, Cargo on Carrier,
represents the time interval on which the Cargo is loaded onto a specific
carrier; it is a decrement commitment because when Cargo is on a vehicle,
its possible use for other purposes is limited. The commitment Cargo on
Vehicle has a Route aspect element called Segment, representing a segment
of the scheduled transport. At runtime, there can be several instances of the
Cargo on Carrier commitment, for example, if cargo is transported using
several vehicles or means of transportation.

The other decrement commitment, Vehicle Use, has also a Route aspect
element. The Origin and Destination of the Vehicle Use element and the
Origin and Destination of the Cargo on Carrier element can be different,
for example, if a vehicle drives unloaded to the loading destination, and
then transports Cargo and, again, drives back unloaded. The cost of using
unloaded vehicle should be reflected in the cost of the transport, which is
what the model does.

An itinerary usually also contains information about time, such as when
cargo has been loaded, unloaded, and reached the final destination. This
can be modeled using the DUE DATE PATTERN on commitments and the
POSTING PATTERN on economic events.

178 5 Patterns

The location pattern can also be configured on economic events instead
of commitments; the business application would then monitor the actual
movement of Cargo.

«clause»
«clause»

«economic resource»

«increment
commitment»

«produce»

«decrement
commitment»

«economic resource»

«use»

«Location»

«decrement
commitment»

«conversion»

«use»

«schedule»

«clause»

Location

«Position»

Origin
Destination
Distance

«Route»

Origin
Destination
Distance

«Route»

Origin
Destination
Distance

«Route»

Location

«Position»

«Location»

Fig. 124. Itinerary

Resulting Context

How do we determine the shipping address of the customer? Some busi-
ness applications store a shipping address (as well as the billing address,
and many other addresses) as attributes of a customer. These addresses are
then used as default addresses for shipments, invoices, etc. Users of busi-

5.3 Location Pattern 179

ness applications have the option to overwrite these addresses in case a
customer wishes to use a different address than his default address.

The solution in this pattern does not have a fixed default customer ad-
dress. Economic events contain all relevant historical information about
business relationship between the enterprise and the customer, and com-
mitments that the enterprise gave to the customer. The economic events
and commitments also specify the shipping, billing, and other addresses
the customer has used in the past. The address for the next shipment can
then be determined by browsing the list of economic events. The customer
may then choose one of the existing destinations, a new one, or one that
the business application can suggest, for example, the destination of the
last shipment, as a default address. This solution is more flexible than that
of a fixed default address as a property of the customer entity because it
develops automatically as the enterprise’s information about the customer
develops.

180 5 Patterns

5.4 Posting Pattern

The posting behavioral pattern keeps track of transactions and makes their
records immutable

Context

Registering the history of the realized or intended exchanges of economic
resources is an important part of the functionality of most business soft-
ware solutions. For example, when economic agents agree upon a com-
mitment, the commitment should be registered, and all modifications to the
registration should be traceable. Tax authorities often set similar require-
ments for exchange economic events and for materialized claims; any
changes made to the data that influence the economic results of the com-
pany should be traceable.

The history of business relationships is typically related to realized or
intended exchanges of economic resources, contracts, agreements, and
claims, such as the purchase and sale of products and services, invoices,
and corresponding payments.

Problem

How do we keep track of the history of economic events, commitments,
contracts, and other entities that represent interactions between economic
agents?

Forces

The solution is influenced by two forces:

5.4 Posting Pattern 181

Users of business applications would like to retrieve comprehensive
analytical information about economic events, and commitments in their
business applications, and to perform data mining on huge amounts of
data related to their businesses. This is the purpose of the ACCOUNT
PATTERN; however, the ACCOUNT PATTERN requires that the busi-
ness application already contains the data describing each transaction.
There are often legal requirements on traceability of data that affect the
financial status of an enterprise. For example, if the users of business
applications made an error when entering the financial data into the sys-
tem, the original (erroneous) information should often not just be de-
leted or overwritten, but a new record that eliminates the effect of the er-
ror should be made.

Solution

The main purpose of the Posting pattern is to keep a history of the eco-
nomic events, commitments, contracts, and claims. The posting pattern at
the application level consists of two elements; see Fig. 125. The Entry
element registers the value of the REA entity (for example, it stores it in
the database), together with the values specified by the Dimension ele-
ment, which provides additional information about the event. After the en-
try has been registered, the values of the entry and dimension are immuta-
ble; no changes to these values are possible.

Commitment,
Economic

Event, Contract
and Claim

any relationAny REA Entity

Dimension

Also entities indirectly
related via other entities

Entry
Posting

Fig. 125. Posting

Design of the Posting Pattern

The aspect type level encapsulates the business logic of the aspect and con-
figuration parameters, which can be set by application developers. At the

182 5 Patterns

aspect type level, the Posting Aspect defines the possible sets of compara-
ble entries known to the business application. The possible sets are speci-
fied by the Name property, and can, for example, be inventory posting, fi-
nance posting, man-hours posting, or distance posting. The Posting Aspect
has a property, Unit of Measure Type, describing which Units of Measure
are allowed for the actual entries. A Unit of Measure Type can, for exam-
ple, be Cash. This would allow actual entries whose Unit of Measure is
USD, GBP, or EUR.

The Entry Type contains information about actual entries. The Value
Rule attribute contains information about how the actual entries retrieve
the value for the entry. The Value Rule is usually a reference to another as-
pect on the same REA entity.

The Dimension Type represents descriptive information that users of a
business application register with each entry. Examples of dimensions are
data characterizing an economic resource, resource type, economic agent,
and agent type related to the REA entity with the Entry element. The data
stored in the dimension is later used by the ACCOUNT pattern to construct
comprehensive reports and to retrieve statistical information. The Value
Rule property contains information about how the actual entries retrieve
the value for each dimension. The Value Rule is usually a reference to
other aspects on the same REA entity as the one on which Dimension is
configured.

The application model level specifies the aspect elements with run-time
properties. At the application model level, the aspect consists of one Entry
and several Dimension elements. The responsibility of the Entry element is
to enable keeping track of the history of the entities with the entry element.
The Value and Unit of Measure attributes represent the numerical value
registered with the Entry. The method commit() saves the data specified
by the Entry and the related Dimensions. The method commit() also makes
immutable the data referenced by the Value Rule of the Entry. That is, no
changes in these attributes are allowed after this operation has successfully
finished. If the entry contained erroneous information, the only way to
undo its effect to create and commit another entry that eliminates the effect
of the error. Date Occurred contains the time interval or date on which the
registered event or commitment occurred (it can actually be a start date
and an end date), while When Noticed contains the date on which the en-
tries were registered.

5.4 Posting Pattern 183

commit()

Value
Unit of Measure
Date Occurred
Date Registered

Value

0..*

1

Name
Unit of Measure Type

0..*

0..*

1..*0..*

Value Rule Value Rule

«instanceOf»
«instanceOf»

0..* 1

0..* 1

Fig. 126. Design of posting pattern

The Dimension element describes the information to be registered with
each entry. This is typically values of aspects on REA entities related to
the entity with the entry element. If the entry is configured on an economic
event, the dimensions applicable would be economic agent, economic re-
source, agent types and groups, and resource types and groups. The Value
attribute contains the information specified by the Value Rule of the Di-
mension at the Aspect Type level.

Example

Fig. 127 illustrates an example of Financial Posting. The economic event
Cash Receipt is related to economic resource Cash and economic agent
Customer.

184 5 Patterns

«participation»

«increment event»

«resource type»

«inflow»

«economic agent»

«Posting»

Unit of Measure Type = Cash

IDString

«Identification»

Value

«Dimension»

Value Rule = Name.IDString

Commit()

Value
Date Occured
Date Registered

«Entry»

Value Rule = Amount.Value

Value

«Value»

IDString

«Identifier»

Value

«Dimension»

Value Rule = CheckNumber.IDString

Fig. 127. Example of Cash Receipt with Posting and Dimensions

The increment Cash Receipt contains the Entry element (Posting aspect)
and the Amount element (Value aspect, see the VALUE PATTERN). The
Value Rule of the Entry element is configured to retrieve data from
Amount. Customer and Cash have both a Dimension element (Posting as-
pect) and an Identification element. The Value Rule of the both Dimension
elements is configured to retrieve the value of the ID String from the iden-
tification aspects.

If the method commit() on the Entry aspect is called, the values of the
Entry aspect and the Amount aspect on Cash Receipt are locked, and the
data including the values of the dimensions is stored.

Resulting Context

The solution above allows the application designers to choose which di-
mensions will be registered with each entry type. By default, it is useful to
assume that the dimensions are all data on the REA entities directly related
to the entity with the entry aspect, plus groups and types of these entities.
However, users of business applications might point exactly to the data in

5.4 Posting Pattern 185

which they are interested. This level of freedom is useful especially if the
application model is not a full REA model but a modeling compromise.

186 5 Patterns

5.5 Account Pattern

In some cases, keeping track of individual entities is not feasible or even
possible. For instance, once wine has been poured into a glass, it is no
longer possible to distinguish between the wine that was in the glass be-
fore the wine was poured into it and the wine that come from the bottle.
The only thing that it is possible to keep track of is the total amount of
wine in the glass.

The total amount of wine in the glass is the difference between the
amount of wine added in it and the amount of wine removed from it. How-
ever, sometimes it is not precisely this difference. Wine might be poured
out of evaporate over time. Wine might also be added to the glass for rea-
sons beyond the scope of the model. There might also be some amount of
wine in the glass before we start registering the additions and removals.

It is not feasible to model every possible way in which how wine can be
added to or removed from the glass, because many of them are not relevant
from the perspective and for the purpose of our model. A model is, by
definition, incomplete compared to reality. The only amount we know pre-
cisely is that of the wine in the glass at the time we measured it.

Context

The POSTING PATTERN describes how to record the history of economic
events, commitments, contracts, and claims. However, merely keeping
track of these entities is usually not the main interest of an enterprise’s de-
cision makers. Users of business applications are also interested in aggre-
gated information about the state of the enterprise.

5.5 Account Pattern 187

Problem

How do we keep track of the total amount of something being increased or
decreased, and eventually compute what constitutes the total amount?

Forces

To address this problem, the following forces must be resolved:

Users of business applications would like to retrieve aggregated infor-
mation about economic events, and commitments in their business ap-
plications, and to perform data mining on huge amounts of data related
to their businesses.
Application designers could manually write an algorithm that retrieves
the aggregated information from the database; however, they would
rather like to anticipate from the application design what information the
users of this application will be interested in.
Business logic should be triggered if certain values reach a certain level.
For example, if the inventory goes below a certain limit, a reorder
should be planned. If the balance of a bank account goes above a certain
threshold, the interest rate should change.
Users of a business application would like to be informed about what a
total amount could be if an economic event occurs. For example, during
decrement or increment commitment, users of the business application
would like to know the amount of available resources at the promised or
expected time.

Solution

Whenever the value of some REA entity is a sum of the values of related
entities, an REA account aspect pattern is applicable.

At the application level, the REA account retrieves the values of all Ad-
dition and Subtraction elements on the related economic events or com-
mitments. The balance of the account is the difference between the sum of
the Additions on the economic events or commitments and the sum of the
Subtractions on the economic events or commitments see Fig. 128, unless
the balance has changed for reasons outside the scope of the model.

The account pattern usually retrieves the values of the Addition and Sub-
traction as well as the supplementary information from the Entry element
of the POSTING PATTERN. Therefore, the ACCOUNT and POSTING pat-

188 5 Patterns

tern are typically used together. The values of the Dimensions registered
by the POSTING pattern are available to the ACCOUNT pattern; therefore,
users of business applications can perform an analysis of the aggregated
value provided by the ACCOUNT pattern.

Fig. 128. Account in the REA application model

Design of the Account Pattern

The aspect type level encapsulates the business logic of the aspect and con-
figuration parameters, which can be set by application developers. At the
aspect type level, the Account Aspect defines the possible sets of compara-
ble entries known to the business application. The possible sets are speci-
fied in the Name attribute and can, for example, be inventory account, fi-
nance account, man-hour account, or distance account. The Account Type
has an attribute, Unit of Measure Type, describing which Units of Measure
are allowed for the accounts. A Unit of Measure Type can, for example, be
Money. This would allow the Accounts to be measured in USD, GBP, or
EUR.

The Addition Type and Subtraction Type contain information about the
values that increase and decrease the balance of the account. The Value
Rule attributes contain information about how the addition and subtraction
elements retrieve their values. The Value Rule is usually a reference to the
Entry element of the Posting aspect. In this way, the posting dimensions
are also available to the Account, which are then used in the Perform
Analysis() method of the Account.

5.5 Account Pattern 189

Perform Analysis()

Balance
Unit of Measure

One

1

Name
Unit of Measure Type

0..*

0..*

0..*

Name
Value Rule

RecalculateValue()

Name
Unit of Measure
Max Balance
Min Balance

«instanceOf»

«instanceOf»

0..* 1

Name
Value Rule

1

0..*

«instanceOf»

0..*

1

1

OnRaiseAbove
OnSinkBelow

Level Rule

0..*

0..’

Balance
Date Time

0..*

Fig. 129. Design of the account pattern

The RecalculateValue() method is called whenever the Balance of the
Account should be recalculated. Calling this method will update account
Balance based on the values of the Additions and Subtractions and the last
Registered Balance. The Balance can be updated whenever there is a new
instance of an economic event or commitment with the Addition or Sub-

190 5 Patterns

traction. However, some implementation technologies, such as OLAP
(Online Analytical Processing), do not allow updating as frequently as at
every transaction, in which case the RecalculateValue() method is called
whenever applicable. Max Value is the highest possible balance. Min
Value is the lowest possible balance. Trying to go beyond these limits will
cause RecalculateValue() to return an error.

Account Level assigns special actions to specific Balance levels of the
account that can be calculated using the Level Rule. Whenever the Recal-
culate Value causes the account Balance to increase from a value on or be-
low a level to a value above it, the event referenced in the OnRaiseAbove
property will be invoked. Similarly, decreasing the balance from on or
above the level to below it will cause the event referenced in the OnSink-
Below property to be invoked.

Dimension Type describes the additional information associated with the
Account Type. The dimensions represent the things for which statistical in-
formation can be obtained. The actual dimension values are provided by
the POSTING pattern, and the Account Dimension Type specifies which
posting dimension type will be used for analytical processing in the ac-
count aspect.

The application model level specifies the runtime attributes which can
be set by the users of a business application or automatically by the sys-
tem. At the application model level, Account contains the actual aggre-
gated values. The Balance and UnitOfMeasure properties contain the ag-
gregated value. The PerformAnalysis() method lets the user of a business
application drill down according to the dimensions from the associated En-
tries of the POSTING PATTERN, and to perform analysis on the account
balance based on these dimensions.

The Registered Balance element contains the Balance and the Date
Time when the balance was measured. The Registered Balance can be
used, for example, to set the initial balance of the account, and to provide a
way to set the account balance if it changes for reasons beyond the scope
of the application model.

Examples

Fig. 130 illustrates an example of an account on economic resource Cash.

5.5 Account Pattern 191

«increment event»

«resource type»

«inflow»

«economic agent» «provide»

«decrement event»
«outflow»

«exchange»

«economic agent»

«receive»

«Posting»

Value

«Entry»

Value

«Addition»

Value Rule=CashEntry.Value

Value

«Dimension»

ValueRule=Name.IDString

IDString

«Identifier»

Balance

«Account»

UnitOfMeasure = USD

Value

«Subtraction»

Value Rule=CashEntry.Value

Value

«Entry»

IDString

«Identifier»

Value

«Dimension»

ValueRule=Name.IDString

«Account»

UnitOfMesureType = Money

«Posting»

Fig. 130. A cash account

This account is part of the aspect called Financial Account. The name of
the account is Cash Account, and its addition element is called Add Cash,
configured on the Cash Receipt economic event. This addition element re-
ceives a value from Entry called Cash Entry. The subtraction element of
the account is configured on the Cash Disbursement economic event, and

192 5 Patterns

is called Subtract Cash. The Value Rule specifies that the subtraction ele-
ment receives a value from the Entry called Cash Entry.

The entry Cash Entry configured on Customer has one dimension, Cus-
tomer. The entry Cash Entry configured on Vendor has one dimension,
Vendor. The two dimensions can become available to the account aspect.
Therefore, the users of a business application can perform an analysis of
the Cash Account balance, and display partial balances for each Customer
and each Vendor.

«decrement commitment»

«resource group»

«reservation»

«inflow»

«decrement event»

«outflow»

«increment commitment»

«increment event»

«reservation»

«fulfillment»

«fulfillment»

«Account»

«Account»

«Account»

Value

«Addition»

Value

«Subtraction»

Value

«Subtraction»Balance

«Account»

Balance

«Account»

Balance

«Account»
Value

«Addition»

Value

«Subtraction»

Value

«Addition»

Fig. 131. Inventory accounts

5.5 Account Pattern 193

Fig. 131 shows an example of three inventory accounts. An inventory is
a group of items on hand. The account Goods to Sell has increment on
commitment Sales Order Line, and decrement on economic event Sale.
The account Goods on Stock has increment on economic event Purchase,
and decrement on economic event Sale. The account Goods to Receive has
increment on commitment Purchase Order Line, and decrement on eco-
nomic event Purchase. Observe that there is no rule that the addition as-
pect element must be on an increment economic event, or vice versa. For
example, the subtraction element of the Goods To Sell account is config-
ured on the increment economic event Purchase.

Resulting Context

As described earlier, the REA model differs from double entry accounting
because it considers economic transactions (economic events and com-
mitments) as primary data about the enterprise, and aggregated informa-
tion such as accounts, are information derived from the economic transac-
tions; or, in other words, as reports.

The account in double entry accounting is different than the REA ac-
count. In double entry, every account has two sides, the debit or left side,
and the credit or right side. Double entry accounting means that every
transaction (economic event or commitment) is recorded twice: once on
the debit side and once on the credit side. An entry is called balanced if the
sum of the debit amounts equals to the sum of the credit amounts.

Double entry accounting is a common practice in many companies for
keeping track of financial data, and is required by legislation in some
countries.

We can derive all information that is needed for constructing accounts
in double entry accounting from the REA model. Therefore, if local legis-
lation or tax authorities require a financial report as it would be in the dou-
ble entry system, it can be created on demand from the REA model. How-
ever, the users of a business application can still keep the richness of the
information provided by the REA model for their management decisions.

194 5 Patterns

5.6 Materialized Claim Pattern

Outflow and inflow economic events usually do not occur simultaneously,
and the exchange duality between the economic events is out of balance
for a certain period of time. In this case, it is common practice for one
economic agent to send another an invoice to settle the amount owed

Context

When a company receives goods or services from its vendor, it often does
not pay for them until it receives an invoice. The invoice basically says:
”We gave you the goods; give us the money, please.”

A contract between the company and its vendor usually specifies the
payment terms, so the company could in fact pay for the goods according
to the payment terms. If the unbalanced amount is known to both eco-
nomic agents, the invoice is not necessary; it is just common business
practice. However, in some cases, the price is not known when the contract
is signed. For example, a service technician who provides maintenance of
equipment is paid according to material and time consumption. In this
case, the invoice also specifies the value of the economic event, which cor-
responds to the time and material used to perform the maintenance.

Problem

How do we keep the economic agents informed about unbalanced eco-
nomic exchanges?

5.6 Materialized Claim Pattern 195

Forces

Three forces must be considered when solving this problem:

If all economic agents involved can keep their models synchronized, the
materialized claim would not be necessary. However, this is not always
the case.
Legal reasons might require a document specifying the unbalanced
value. For example, value-added tax (VAT) in some countries is calcu-
lated as a percentage of the invoiced amount, and the document specify-
ing this amount must be made available to tax authorities.
The exact unbalanced value between the inflow and outflow events
might be unknown to one of the economic agents. For example, a ser-
vice contract might specify payments according to consumption. When
the service is finished, the consumption is known to the service provider
and to the customer. Or a vendor sometimes adds a shipping fee to the
price of products, whose exact value might not be known to the pur-
chaser at the time of purchase. We want to ensure that economic agents
agree upon the unbalanced value.

Solution

Whenever an economic event occurs without the occurrence of all corre-
sponding dual economic events, there exists a claim between economic
agents related to the economic events.

Fig. 132. Materialized claim

The Materialized Claim is a physical representation of an REA entity
Claim. A responsibility of a Claim is to contain the unbalanced value and
business logic determining whether there is an imbalance. The Materiali-

196 5 Patterns

zation and Settlement elements contain information about the unbalanced
economic events.

Design of the Materialized Claim Pattern

The structure of the Materialized Claim pattern is shown in Fig. 133. The
aspect type level encapsulates the business logic of the aspect and configu-
ration parameters, which can be set by application developers. At the as-
pect type level, the Claim Type contains the Name of the materialized
claim, such as Invoice or Credit Memo. The Materialization Type and Set-
tlement Type contain Value Rule, Resource Rule, and Agent Rule that de-
termine how the Value, Resource, and Agent properties of Materialization
are obtained.

The application model level specifies the runtime attributes that can be
set by the users of business applications or automatically by the system. At
the application model level, the Materialization element contains the Value
of an economic event that is used to materialize, i.e., create, the claim. As
economic events can contain several value attributes, such as quantity,
price, and cost, the materialization element specifies which of these values
will be considered as an input for the balance. This Value increases the
Unbalanced Value of the Materialized Claim. The Resource and Agent at-
tributes contain relevant information about the economic resource and
agent related to the economic event. What information is considered rele-
vant depends on the requirements of the users of the business application,
but it usually is an identification of the resource and agent.

The Settlement element contains the Value of the economic event that is
used to settle the claim. This value decreases the Unbalanced Value of the
Materialized Claim. The Economic Resource and Economic Agent attrib-
utes contain relevant information about the economic resource and agent
related to the economic event, usually their identifications.

The Materialized Claim element is a report that contains information
about the unbalanced value and relevant information about economic
events related by exchange duality. The Unbalanced Value can be obtained
as the difference between the values of the Materialization and Settlement
elements. The Date Time attribute specifies when the attributes of the Ma-
terialized Claim have been made valid, for example, when an invoice has
been created.

5.6 Materialized Claim Pattern 197

0..*

Unbalanced Value
Unit of Measure
DateTime
Is Settled

0..*

1

0..*

0..*

0..*

0..*

Value Rule
Resource Rule
Agent Rule

Name

«instanceOf» «instanceOf»

11..*

Value Rule
Resource Rule
Agent Rule

1

1..*

Value
Unit of Measure
Resource
Agent

Value
Unit of Measure
Resource
Agent

«instanceOf»

0..*

0..* 1

Fig. 133. Design of the materialized claim pattern

Examples

The Invoice is a materialized claim: the customer should pay for the goods
or services the vendor provided.

When a vendor ships goods to the customer, a claim exists until the cus-
tomer pays for the goods. At any time after the shipment, the vendor can

198 5 Patterns

materialize this claim, i.e., create an invoice. The Materialization and Set-
tlement elements correspond to the invoice lines in Fig. 134. When the
customer eventually pays for the goods, each invoice line will be related
via settlement relationship to the payment.

Fig. 134. A materialized claim

Credit Memo is a materialized claim: the customer overpaid the vendor.
A Credit Memo is usually accompanied with a payment that settles the
claim, but it does not have to be. For example, partners can agree to deduct
the credit amount in the following payment.

An interesting situation occurs in the cases where the economic agents
related to the increment event are different from the agents related to the
decrement event. If a library receives a donation from a sponsor to lend
books to readers, a claim between the sponsor and the library exists unless
the library provides the lending service to readers; see Fig. 135. What to do
with the money from the donation the library has not spent can be deter-
mined by the terms of the donation, which is the contract between the
sponsor and the library.

5.6 Materialized Claim Pattern 199

«decrement event» «increment event»

«economic resource» «economic resource»

«economic agent» «economic agent» «economic agent»

«receive» «provide» «receive» «provide»

«exchange»«outflow» «inflow»

Fig. 135. Donations create claims

Resulting Context

In the REA modeling framework, a materialized claim such as an invoice
is a kind of report, containing information derived from economic events.
This contrasts with some business software applications, where the invoice
is the central part of the business solution. Invoices and other materialized
claims are needed when the business management tools are pen and paper,
but as the data in business applications of trading partners can be kept syn-
chronized, invoices are not necessary in order to run a business.

 A materialized claim can contain information about all unbalanced du-
alities between participating economic agents. The invoice created accord-
ing to the model in

Fig. 134 is not limited to a single order, but can contain claims from all
shipped but unpaid for orders for a specific economic agent. Many compa-
nies have a business practice to create one invoice per sales order, but this

200 5 Patterns

is probably due to the limitations of their software business solutions,
rather than their business needs. But if this is a user requirement, the pat-
tern can be easily restricted to materialize only subsets of the claim limited
to specific contracts, simply by adding a relationship between the contract
and the materialized claim.

The claim contains information about aggregated unbalanced amounts,
but does not answer the question about which decrement and increment
events match, such as which received payments are for which sales. The
RECONCILIATION PATTERN answers this question.

5.7 Reconciliation Pattern 201

5.7 Reconciliation Pattern

Have you ever experienced a situation in which a company has received a
payment, it was difficult for it to determine what this payment is for?

Context

One of the REA domain rules specify that in the REA application model,
every increment event must be related to a decrement event, and vice
versa. This rule must also be applied at runtime; each actual instance of an
increment event must eventually be related to one or more actual instances
of a decrement event, and vice versa.

Problem

How do users of business applications find which occurrences of incre-
ment and decrement economic events should match?

Forces

The following forces must be resolved in the solution:

202 5 Patterns

Some inflow economic events, such as payments, come with incomplete
information about who sent cash, and what the payment was for. Users
of business application would like to match this payment with one or
more of the outflow events, such as sales.
Sometimes, the received payment does not exactly match the price of
the sold goods or services, and sometimes a payment comes in several
installments. Users of business applications would like to match the
payments with sales, and to determine the outstanding balance of a
given customer.
Sometimes, economic events do not exactly match the commitments.
Users of business applications would like to determine which economic
events match which commitments.
Sometimes, the matching amounts are not exactly the same, but the dif-
ference is so small that it is not worth of claiming it. These situations
can happen, for example, due to changing exchange rates when dealing
with different currencies. Users of a business application might like to
have the possibility to declare these events as matching, even when the
numbers differ.

Solution

The Reconciliation pattern is essentially a many-to-many relationship be-
tween increment and decrement economic events related by the exchange
or conversion duality, or between commitments and economic events re-
lated by fulfillment, or between commitments related by reciprocity. The
Initiator and Terminator elements hold the values to be reconciled.

Fig. 136. A reconciliation

Design of the Reconciliation Pattern

The reconciliation pattern at the aspect type level and the application
model level is illustrated in Fig. 137.

5.7 Reconciliation Pattern 203

Aspect Type

Application Model

Value
Unbalanced Value
Reconciled ID []
IsReconciled

Terminator

Value
Unbalanced Value
Reconciled ID []
IsReconciled

Initiator

0..*

0..*

Name
Reconciliation Method

Reconciliation Aspect

Commitment or
Economic Event

0..*

Commitment or
Economic Event

0..*

1..*
1..*

Name
Value Rule
ID Rule

Initiator Type

Name
Value Rule
ID Rule

Terminator
Type

«instanceOf» «instanceOf»

1..* 1..*

Fig. 137. Design of the reconciliation pattern

The aspect type level encapsulates the business logic of the aspect and
configuration parameters that can be set by application developers. At the
aspect type level, the Reconciliation Aspect contains an attribute for its
Name and a Reconciliation Method. The reconciliation method is an enu-
meration that can be set by the application developer, and determines the
strategy of how to match the initiator and terminator values. Some of the
reconciliation strategies are:

The values of oldest initiator and terminator are matched first. If these
values are not the same, the difference is applied to the next oldest ini-
tiator or terminator, and the difference is matched to the next oldest ini-
tiator or terminator. The outstanding value is stored in the Unbalanced
Value attribute of the newest terminator or initiator element.

204 5 Patterns

The values that are the same or most similar are matched first. If there
are values that cannot be matched, the difference is stored in the Unbal-
anced Value attribute of the terminator or initiator that differs most from
the corresponding terminator or initiator.
The matching economic event is determined from supplementary infor-
mation provided by the events. For example, if the payment contains a
shipment number, then the payment and shipment are matched.
Manually, users of business applications can themselves find the match-
ing values, and determine which of the implemented methods should be
used, (for example, oldest first).

The Initiator Type and Terminator Type contain the Value Rule attribute
that determines how the Initiator and Terminator obtain their values. The
Reconciliation Pattern in the application model must have at least one Ini-
tiator and at least one Terminator element.

At the application model level, which specifies the runtime attributes
that can be set by the users of a business application or automatically by
the system, the reconciliation consists of two elements. The Initiator and
Terminator elements have the attributes of Value, holding the value to be
reconciled, and Unbalanced Value, holding the value that has not been
reconciled. By setting a Boolean value IsReconciled, a user can declare the
Initiator and Terminator as reconciled even if they have a nonzero unbal-
anced value. The Initiator and Terminator elements are usually configured
on commitments and economic events related by duality, reciprocity, or
fulfillment relationships.

Examples

Fig. 138 illustrates how a reconciliation can be applied between a Sale and
the corresponding Cash Receipt.

5.7 Reconciliation Pattern 205

Fig. 138. Reconciliation between commitment and economic event

An enterprise made three sales to a customer: S001 for USD20, S002
for USD25, and S003 for USD50; it received three payments from the cus-
tomer: P001 for USD 25, P002 for USD45, and P003 for 5 USD. The
problem is to match sales and payments.

Table 2 below, shows the Initiator and Terminator in a table format. We
decide to match the same or similar values (see also the illustration before
the Context section) first. We match S001 with P002, and the payment
P002 will cover the shipments S001 and S003. As the customer has not
paid enough to cover the three sales, sale S003 has an unbalanced value of
USD 20.

Table 2. Example of reconciliation

Initiator
Event ID Value Unbalanced

Value
Reconciled

ID
S001 20 0 P002
S002 25 0 P001
S003 50 20 P002, P003

Terminator
Event ID Value Unbalanced

Value
Reconciled

ID
P001 25 0 S002
P002 45 0 S001, S003
P003 5 0 S003

Resulting Context

In order to use the reconciliation pattern, the values of the initiator and
terminator must be comparable; they must have the same or transformable
units of measure. For example, we cannot directly compare quantity in

206 5 Patterns

pieces and price in USD, so if a shipment specifies quantity in pieces but
not prices in USD, we cannot use the reconciliation pattern to find the
matching payment. If the commitment specifies monetary value in one cur-
rency, but the enterprise receives payment in the different currency, busi-
ness application must have some functionality for comparing these values
in order match the unbalanced value. Some unit conversions, but not all,
are handled by the VALUE PATTERN.

The unbalanced value of the initiator or terminator elements can be used
as an unbalanced value of the materialized claim. It will be a positive or a
negative claim, depending on whether the initiator and terminator will be
configured on an increment or an decrement economic event, respectively.

5.8 Due Date Pattern 207

5.8 Due Date Pattern

Due date is the time by which something must be finished or completed

Context

Deadlines, starting dates, renewal dates, and last payment dates are exam-
ples of the dates that are often of high importance to users of business ap-
plications. Often certain actions have to be taken, and things have to be
done on or before these dates, or within a certain time period after these
dates.

Problem

How to model due dates in the REA model, and how can a business appli-
cation help users to manage the dates?

Forces

If you deal with due dates, you many need to address the following forces:

Due dates specify moments that occur in the future. It usually does not
make sense to set a due date for an event that has occurred in the past.
The due dates are usually properties of commitments, claims, and con-
tracts. Some commitments specify time intervals, such as the commit-
ments in conversion processes; some specify instantaneous events, such
as those for change of ownership.
Some time events are often related to other time events; for example,
users of business applications might like to receive a customer’s pay-
ment within 30 days from the invoice date.

208 5 Patterns

Solution

We will illustrate a simple version of the pattern that satisfies the forces; it
consists of one element, Due Date. Due Date is one of the patterns that do
not crosscut REA entities. We will discuss a more complex version of the
due date pattern in the resulting context section. The Due Date pattern can
be used whenever the business logic needs to specify the deadlines, mile-
stones, and dates that will or should occur in the future, as well as the de-
pendencies of these dates on other dates.

Fig. 139. Due date pattern

Design of the Due Date Pattern

A design of the Due Date pattern is illustrated in Fig. 140. The due date
pattern at the aspect type level encapsulates the business logic of the due
date aspect and configuration parameters, which can be set by application
developers. The Due Date Type specifies the configuration parameters for
the Due Date elements. Editable is an enumeration indicating whether the
user can, cannot, or must edit the Date of the Due Date. The Activation
Rule specifies how the Date property of the Due Date is determined. The
Activation Rule specifies how the Date depends on other dates or other
values in a business application. Often, the due date pattern needs to have
knowledge of a calendar. The Activation Rule can specify, for example,
that payment should occur on the fifth day of the month, following a speci-
fied date, unless the payment date is Saturday, Sunday, or a public holiday,
in which case the date is the preceding week day.

5.8 Due Date Pattern 209

Name

0..*

0..*

«instance of»

Activation Rule
Editable

Date
Duration
State

Fig. 140. Design of the due date pattern

The application model level specifies the runtime attributes of the due
dates that can be set by the user of a business application or automatically
by the system. The State of the Due Date can be Upcoming, Expired, or
Disabled. Before the time specified by the Date, the State of the Due Date
is Upcoming. After the Date, the State is Expired. The State of the Due
Date can also be Disabled. The Date specifies the date and time the due
date expires. The Date can be editable by the user of a business applica-
tion, depending on the configuration property Editable on Due Date Type.
Many Due Dates expire after a period of time after the date specified by
the Activation Rule. The Duration specifies the difference between the
dates calculated by the Activation Rule and the Date. The users of business
applications may edit the Duration; therefore, it is a property of Due Date
and not Due Date Type.

Time intervals, for example, the duration of a task, can be modeled as
two due date aspect patterns. One Due Date specifies the start of the task.
Another Due Date specifies the end of the task. The activation rule of the
second due date is configured to receive the value of the first due date, and
the duration specifies the length of the task. An example is illustrated in
Fig. 143.

210 5 Patterns

Examples

The example in Fig. 141 illustrates the application model in which an In-
voice specifies that a payment has to be made within certain time interval
after the invoice date. This example also illustrates that a general concept
of date or time is contained in several aspects; each aspect specifies the
semantic of the date and time in its own context.

«commitment»

«commitment»

«reciprocity»

«increment event»

0..*0..*«fulfillment»

«claim»

«decrement event»

«fulfillment»

«materialization»
«settlement»

«exchange»

Duration
Date

«Due Date»

Editable = ’can edit’
Activation Rule = Invoice.DateOcurred

Date Occurred

«Entry»

Date Occurred

«Entry»

Date Occurred

«Entry»

Fig. 141. An invoice specifying payment

The moment at which the Invoice is issued is modeled as the Date Oc-
curred property of the Entry element of the Posting aspect on the Invoice.
The Activation Rule of the Due Date element is configured to receive the
Date Occurred value, and the Duration specifies the delay.

The model in Fig. 142 shows an example of two due date aspects that
specify a time interval. The Start Task aspect has a blank activation rule
and the Date must be set by users of the business application. The End
Task aspect has an Activation Rule set to refer to the Date of the Start
Task; its Duration specifies the duration of the task; and users of the busi-
ness application can edit the date.

5.8 Due Date Pattern 211

«commitment»
Task

Duration
Date

«Due Date»
Start Task

Editable = ’must edit’
Activation Rule = ’ ’

Duration
Date

«Due Date»
End Task

Editable = ’can edit’
Activation Rule = StartTask.Date

«dependsOn»

Fig. 142. The start and end of a task

«commitment»

Duration
Date

«Due Date»

Editable = ’can edit’
Activation Rule = EndTask.Date – EndTask.Duration

Duration
Date

«Due Date»

Editable = ’must edit’
Activation Rule = ’ ’

«dependsOn»

«dependsOn»

Fig. 143. The scheduled end and the duration of a task determines its scheduled
start

In the planning of conversion processes, often the scheduled end date of
an economic event is known, and the planners need to determine the latest
start date. The scheduled start and the scheduled end of the economic
event, specified by the commitments, are Due Dates. The activation rule of
the scheduled start due date is set to calculate it from the duration and the
scheduled end date, see Fig. 143.

212 5 Patterns

Resulting Context

The general concept of time is contained in several aspect patterns. The
POSTING PATTERN contains the dates when economic events, commit-
ments, and claims occurred and when they have were registered. The DUE
DATE PATTERN captures the information about when an event should oc-
cur.

What if users of business applications would like to edit and create their
own activation rules? In other words, what if we add another force to this
pattern: “The rules specifying dependencies between dates should be edit-
able by the users of the business application.” Then, the activation rule
must be present as a property of some element on the application model;
for example, we must add a element Due Date Setup to the aspect at the
application model level. At the aspect type level, the Due Date Setup Type
will specify a language in which the users of the business application ex-
press the activation rules. For example, an activation rule ‘21D’ in a busi-
ness software application Navision determines the due date as 21 days
from now, ‘CM+8D’ means that the due date is at the end of the current
month plus eight days. These rules can determine the dependency on the
current date, but not a dependency on other dates specified in the business
application.

The Due Dates are never configured on economic events, because eco-
nomic events register what has already happened, while the due dates rep-
resent moments that will occur in the future.

5.9 Description Pattern 213

5.9 Description Pattern

T-shirt with Miami Beach Topics

Relax in this high quality (Hanes-Beefy-T)
white T-shirt with Miami Beach Topics silk-
screened on the front. The back is plain.

A description of an item from a product catalogue

Context

REA entities, especially economic resources and resource types, contain
information about real things. This information is presented to users of
business applications in many different ways and formats. Some of the in-
formation also comes in unstructured form.

Problem

How do we store unstructured information about REA entities?

Forces

The following forces need consideration:

Products can be described in many different ways. For some entities,
simple text is sufficient, but a description can also be graphical. De-
scriptions can also incorporate sound or other digital multimedia.
Some forms of description are standardized or regulated by professional
bodies, such as various types of specifications and drawings.
In addition to products, which are economic resources, users of business
applications often store unstructured information about other REA enti-
ties, such as economic agents and events.

214 5 Patterns

Solution

Description aspect pattern can be used to store unstructured information
about REA entities. The sketch of a solution is illustrated in Fig. 144. De-
scription pattern does not crosscut other entities, and can be configured on
any REA entity.

Fig. 144. Description pattern

Design of the Description Pattern

The aspect type level encapsulates the business logic of the description as-
pect and the configuration parameters, which can be set by application de-
velopers. At the aspect type level, the Description Aspect Type defines the
Name of the type of description. The Media attribute of Description Type
determines what kind of information can be held by the Description ele-
ment. Examples of Media can be text, multiline text, picture, or Web ad-
dress.

The application model level specifies the runtime attributes that can be
set by the users of business applications or automatically. At the applica-
tion model level, Description contains an attribute that at runtime contains
a description of the instance of the REA entity.

Textual Description remains the most flexible means of describing an
REA entity. Textual description is always in a specific language; for some
business solutions it is necessary to provide the textual information in sev-
eral languages.

Graphical Description is often used in to describe products in product
catalogues, but can also be used to store drawings and diagrams.

Web Page is a pointer to the description of an REA entity on the Inter-
net. A Web Page is often used as a description of economic agents such as
companies. The attribute Internet Address contains a URL (Universal Re-
source Locator), a text string pointing to the description of the business ob-

5.9 Description Pattern 215

ject on the Internet. The Web Page is often used as a description of the
economic agents.

Aspect Type

Application Model

Name

Description Aspect

REA Entity
0..*

0..*

«instanceOf»

Media

Description
Type

Description

Text

Textual
Description

Picture

Graphical
Description

Internet Address

Web Page

Fig. 145. Design of the description pattern

Examples

An example of a food item Product Type is illustrated in Fig. 146. This
Product Type is an economic resource with configured description patterns
Picture, Product Description (which is supposed to contain textual de-
scription of the product, in free text), and Cleaning Instructions (a textual
description), usually for both before and after opening the product.

The other example illustrated in Fig. 146 is a Customer VAT Group. At
runtime, users of a business application will classify the customers into
several VAT groups, and describe the Purpose of each group with free
text.

216 5 Patterns

Fig. 146. Product type and customer group with description patterns

Resulting Context

The DESCRIPTION PATTERN is intended to store unstructured informa-
tion about an REA entity. If an application developer would like to store
structured information, it should use other patterns. Thinking about struc-
ture of the descriptions is often a way to discover new behavioral patterns.

IDENTIFICATION PATTERN is related to DESCRIPTION PATTERN.
Although a Description can be also used to identify an entity, it is not its
primary purpose. Usually, it is better to have one or more dedicated Identi-
fiers using the IDENTIFICATION PATTERN.

NOTE PATTERN is also related to DESCRIPTION PATTERN. Both
Note and Description store unstructured information. The difference is that
the primary purpose of the Description is to store information that de-
scribes an REA entity. The Note can be used to store any unstructured in-
formation about the REA entity. It is also usual that different users of
business application will have different access rights to the Description
then to the Note. While a Description about the product can be made avail-
able to the customers, the Notes might contain internal information for
salesmen or warehouse personnel.

5.10 Notification Pattern 217

5.10 Notification Pattern

SMS (Short Message Service) is a text message to be sent and received to a
mobile phone via the network operator

Context

Various users of business applications should often be notified when cer-
tain events occur, or when certain conditions become true. For example,
both customer and bank personnel might be interested in being notified
when the customer account has been overdrawn. Business applications can
be configured to create and send notifications automatically.

Problem

How do we notify users of business applications about changes in the REA
entities?

Forces

Several forces arise when designing the solution:

There are different ways to contact users of business applications. The
notification can range from a message box window on a computer
screen to sending a letter to a specified address.
Different users of business applications can be contacted in different
ways. Some users can be contacted in multiple ways. The method of no-
tification can vary, depending upon the user and upon the kind of notifi-
cation.
Different users are interested in different information resulting from the
same change.

218 5 Patterns

Solution

Notification is a specific unit of functionality that encapsulates the mecha-
nism for notifying users of business applications. A notification pattern
consists of two elements. The Address element contains the way to contact
the economic agent. The Message element contains the information for-
warded to the agent, as well as the logic determining when the agent is no-
tified.

Fig. 147. Notification pattern

Design of Notification Pattern

At the aspect type level, Notification Type contains the Name of the notifi-
cation, and encapsulates the business logic of forwarding messages to spe-
cific addresses. The Media Rule defines which Media the specific Address
is allowed to contain, and hence determines which attributes a specific Ad-
dress Type contains (for example, street, city, and zip code for postal ad-
dress), and consequently also which message types can be delivered to
which kinds of addresses; hence, the Media Rule. Examples of Media are
postal address, e-mail address, and SMS address.

5.10 Notification Pattern 219

Aspect Type

Application Model

Name
Media Rule

Notification Aspect

Any REA Entity
0..*

Economic Agent
0..*

Notify()

Name
Message Rule

Message Type

Media

Address Type

«instance of» «instance of»

Address

Name
Street
City
State
Zip Code

US Address

e-mail

E-Mail
Address

phone number

Voice
Address

phone number

SMS
Address

Message

Country

Postal
Address

Name
Street
Locality
CEDEX postcode and area indicator

French Address

notification area

System
Address

e-mail

E-Mail
Message

media file

Voice
Message

text

SMS
Message

text

Postal
Message

text

System
Message

etc.

Fig. 148. Design of the notification pattern

220 5 Patterns

The Message Type element has the responsibility of creating a message.
Name specifies the name of the message type. The Message Rule attribute
specifies how the message will be created. The simplest approach is to use
a predefined message for each message type; a more complex approach is
to create a message at runtime by composing it from predefined informa-
tion and relevant data available. When the Notify() method is called, the
message is created and the user notified.

At the application model level, Message can be configured on any REA
entity, and represents a message that can be sent to an Address. Message
can be one of the listed examples of messages (System, Postal, E-mail,
Voice, SMS, and so on). Address is usually configured on an economic
agent, and can be one of the listed examples of addresses. Each address
contains different elements and rules. The business logic at the aspect type
level determines which message types can be delivered on which address
types.

Fig. 149. Notification on account event

Examples

Fig. 149 shows an example of a Customer economic agent that is noti-
fied when its Account level sinks below its credit limit. Customer is con-
figured with the Notification aspect, where both the Message and the Ad-
dress elements are configured at the Customer entity. The OnSinkBelow

5.10 Notification Pattern 221

event of the Account Level (a part of the Account Type element, see the
ACCOUNT PATTERN) causes the Notify() message of SMS Message ele-
ment to send an SMS message with the Balance of the Bank Account as-
pect element as Text

A mobile phone operator, T-Mobile, in some countries sends a voice
and an SMS message to its customers every time a customer receives a
message in his voice mail. Fig. 150 shows how this functionality could be
implemented using the notification aspect pattern.

Fig. 150. Notification on new voice mail

Voice Mail Messages are economic resources that are members of the
group Voice Mailbox of a specific customer. Whenever someone records a
new voice mail message, the grouping relationship calls a Notify() method
of the Voice Notification and SMS Notification elements. These elements
create the voice and text messages and send them to the customer Phone
Number.

222 5 Patterns

5.11 Note Pattern

The postman would like to remember his experience with various custom-
ers, and perhaps share it with other postmen

Context

Users of business applications often require from them the possibility to
add various comments and remarks to various entities. These remarks are
not a description of the entity; rather, they contain information such as
their experience with the customer, promises salesmen gave to customers
that are too indefinite to become commitments, and similar remarks.

Problem

How do we record unstructured and ad hoc information about REA enti-
ties?

Forces

The following forces arise:

The remarks and comments are unstructured and are often written as
plain text.
The stored information is often intended only for internal use in the
company.
An REA entity can have many remarks and comments attached.
Sometimes it is useful to store the date and author with each remark to
keep track of the development of the entity.

5.11 Note Pattern 223

Solution

The note aspect pattern can be used to attach comments, observations, and
notes to REA entities. The Note aspect pattern is illustrated in Fig. 151. It
consists of two elements, the Note element, whose responsibility is to re-
cord the comment, and the Author element, which identifies who wrote the
note.

Fig. 151. Note aspect pattern

Design of the Note Pattern

The structure of the Note pattern is illustrated in Fig. 152. At the aspect
type level, the Note Type specifies its Name of the Note Type, as users of
business applications might want to attach different types of notes to REA
entities. Author Type specifies the ID Rule that determines the information
that will identify the author of the Note.

At the application model level, Note represents one or more comments
on an REA entity. Note contains the Text of the note, and the Date when
the text was written. The Author contains the Author ID attribute that iden-
tifies the author. There can be multiple instances of the Note of the same
Note Type on a single instance of an REA entity.

224 5 Patterns

Aspect Type

Application Model

Author ID

Author

Text
Date

Note

0..*

1

Name

Note Aspect

Economic Agent
0..*

Any REA Entity
0..*

0..*0..*

Name

Note Type

Name
ID Rule

Author
Type

«instanceOf» «instanceOf»

0..1
0..*

Fig. 152. Design of the note pattern

Examples

The example in Fig. 153 illustrates two note aspects, Promise and Experi-
ence, configured on economic agents Salesman and Customer. Fig. 154
shows a runtime snapshot of this Note; observe that there can be several
instances of Notes of the same Note Aspect, such as several Promises.

5.11 Note Pattern 225

Fig. 153. A configured note aspect pattern

Fig. 154. The note aspect pattern at runtime

Resulting Context

The NOTE PATTERN is related to the DESCRIPTION PATTERN in the
sense that both can store unstructured information. However, the purpose
of description and note is different. While the purpose of description is to
store the information that actually describes the REA entity, the note can
be used to store any unstructured information about an REA entity.

Another difference is that while at runtime there is usually only one De-
scription instance per configured Description Aspect in an REA entity,
there can be multiple instances of Note.

226 5 Patterns

5.12 Value Pattern

The value of an object is often measured in money, but the value is influ-
enced by many factors. For example, carat weight, clarity, color, and cut
contribute to the value of a diamond

Context

A basic assumption for why a rational enterprise has exactly the business
processes it has, is that these business processes add value to the resources
that are under the control of the enterprise. During exchange processes,
economic agents receive resources of higher value than those they give up;
in conversion processes the value of produced resources is higher than the
resources used and consumed.

In practice, this qualitative answer is often not sufficient. Users of busi-
ness applications would like quantitative information about how much
value each instance of the process adds.

Problem

How do we represent quantitative information about the value of the REA
entities?

Forces

Resolving this problem effectively requires resolution of the following
forces:

Although rational business processes add value, this is only true on av-
erage. Specific instances of value-adding processes can decrease the

5.12 Value Pattern 227

value of an enterprise’ resources6. Detailed information about the proc-
esses is crucial for process improvement.
As the value added by business processes is measured through the en-
trepreneurial purpose of each process, it can be represented in various
units; production processes can be measured in terms of quantities and
exchange processes can be measured in terms of monetary values.
Users of business applications might require that value be represented in
different units on demand. For example, if an enterprise issues an in-
voice in one currency and receives payment in another currency, there
must be some method how to estimate whether the values of invoice and
payment correspond.
Sometimes, the value must be made immutable; for example, if an en-
terprise makes an offer to the customer (an offer is a suggested con-
tract), the price must not change, even if the values of the price elements
(such as material, tools, and services) change.

Solution

Value pattern holds information about the value of the REA entities. Val-
ues include prices, costs, quantities, taxes, discounts, and bonuses. A value
pattern is sketched in Fig. 155. Value is calculated from several Value
Components; for example, the value of tax can be calculated from the sales
price and the tax percentage. Both Value and Value Component are repre-
sented as a number and a unit. Values and Value Components can have dif-
ferent units; it is the responsibility of the Value Aspect to perform any con-
version.

Fig. 155. Value pattern

6 It has been reported that in the film industry, only about 10% of all produced

movies are profitable. On average, these 10% must generate enough profit to
cover the losses from the 90% of non profitable movies.

228 5 Patterns

Design of the Value Pattern

The aspect type level encapsulates the business logic of the aspect and con-
figuration parameters, which can be set by application developers. At the
aspect type level, the Value Aspect contains the Name of the aspect and
Calculation Rule, which is an expression of how the Value is calculated
from the Value Components. The Value Type holds the Name, and the Unit
of Measure. Further the Value has an operation, LockValue(), which locks
the value in the application model. The Value Component Type contains
the Name of the Value Component and the Unit of Measure. The Source
Rule defines how the value of the element is obtained, and usually refers to
values of other aspects. The Multiple property determines whether there
can be multiple elements of the same Value Component Type in the appli-
cation model.

The Unit of Measure holds the Name and the Symbol of the Unit of
Measure that is used in the Value Component and the Value. The Conver-
sion contains the Conversion Factor between various Units of Measure.
Some conversion factors, such as currency exchange rates, can be obtained
dynamically, for example, as Web services.

The application model level specifies the runtime attributes that can be
set by the users of business applications or automatically by the system. At
the application model level, the Value element holds the property Value
together with the Unit of Measure. The Value element is connected to zero
or more Value Components from which the Value is calculated. The Value
Component contains the Value with the Unit of Measure; therefore, it is
always possible to determine what Value Components the Value consists
of. The Value Components can be given in Units of Measure different from
that of the Value property of the Value element.

5.12 Value Pattern 229

Fig. 156. Design of the value pattern

Examples

The example in Fig. 157 illustrates the value aspect called Nominal Price,
consisting of one Value element and two Value Component elements. The
element Price is configured on the Sales Line and is calculated from two
elements, Quantity and Unit Price, simply by multiplying quantity with
unit price. When a contract is signed, the Lock Value() of the Price and
Quantity is invoked. Then, Price and Quantity do not change, even if the
Unit Price changes. Please note that users of business applications can
change the Unit of Measure of all three elements at runtime; in such a case,
the business logic will recalculate the Value.

230 5 Patterns

«commitment»

«economic resource»
«ouflow»

Name = Nominal Price
Calculation Rule = Quantity.Value * UnitPrice.Value

Value
Unit of Measure

«Value Component»

Unit of Measure = USD per unit

Value
Unit of Measure

«Value»

Unit of Measure = USD

Value
Unit of Measure

«Value Component»

Unit of Measure = unit

Fig. 157. The nominal price of an item as a configured value aspect pattern

5.13 Inventor’s Paradox Pattern 231

5.13 Inventor’s Paradox Pattern

How to extend a business application in a consistent manner?

Context

Structural patterns describe the REA modeling framework for business
systems. The REA concepts have not significantly changed during last ten
years; therefore, we do not expect any radical change in it in the near fu-
ture. The REA modeling framework has survived the test of time and has
been successfully implemented in several business standards.

In contrast, behavioral patterns represent the functionality of the busi-
ness applications that originate in user requirements. It is natural to expect
that users of business applications will require richer, more powerful, and
generally better software applications in the future. Therefore, it is likely
that any limited list of behavioral patterns does not meet all future re-
quirements the users of a business application could possibly have. When
application designers implement business applications, they are forced to
discover new patterns originating from unexpected user requirements.

Problem

How do we discover a new behavioral business pattern?

Forces

A solution is influenced by the following forces:

Users of your business application require functionality that is not cov-
ered by the behavioral patterns we know about.

232 5 Patterns

Users of business applications sometimes require very specific features
that are not always good candidates for behavioral patterns. Behavioral
patterns are generalized and reusable units of business logic; therefore,
it usually requires substantial work to transform a specific user require-
ment into a business pattern.
We would like a general rule or guidelines to help us formulate new
business patterns from new user requirements.

Solution

The solution is known as Inventor’s Paradox, described by the mathemati-
cian George Polya (Polya 1982):

“A solution to a general problem is often simpler than a solution to a
specific problem.”7

In summary, the Inventor’s Paradox is as follows:

Solve a specific problem by solving a more general problem.
The general problem paradoxically has simpler solution.
But you have to invent an appropriate general problem which covers
your specific problem.

To apply the Inventor’s Paradox, application designers analyze the us-
ers’ business problems and try to extract patterns that can be generalized.
Then, they solve this generalized problem as one or more behavioral pat-
terns. Finally, they solve each specific problem by configuring the behav-
ioral patterns in a software business application.

The guidelines above are general, and can be applied to solving prob-
lems in any domain. In model-driven design for software in a specific do-
main, the application developers must keep in mind the purpose of the do-
main, and generalize the specific problems in a way that is consistent with
the domain. This sounds easy; but, based on our experience, it is not.

We formulated the following guidelines to help application designers
focus on generalizing specific problems in the scope of the business logic
domain.

7 Polya’s original formulation was “The more ambitious plan may have more

chances of success, provided it is not based on a mere pretension, but on some
vision of the things beyond those immediately present.” We use the formulation
by Karl J. Lieberherr (Lieberherr 1997).

5.13 Inventor’s Paradox Pattern 233

The behavioral patterns described in this book

have business semantics,
are large units of functionality,
often crosscut the structural patterns.

These principles are described in more detail below.

Behavioral Patterns Have Business Semantics

“What business problem does this requirement solve?” is probably the
most fundamental question to ask when examining a new user require-
ment. Users often tend to ask for a low-level or computational functional-
ity, and it is up to the application designer to discover the real business
purpose behind this requirement. For example,

Is a function that computes a sum of numerical values a good candidate
for a behavioral pattern in the business domain? Without domain-driven
modeling in mind, a designer might think that he can generalize this re-
quirement into an arithmetic operation pattern to cover subtraction,
multiplication, and division as well. Would it be a good behavioral pat-
tern? We need to discover why the users need to sum values. Do the us-
ers need it for making an order total? Do the users need it for calculating
the stock value of the product? The arithmetic operation is probably not
a good candidate for a behavioral pattern in the business domain, but
contract total or account might be.

Is a currency converter a good candidate for a behavioral pattern in the
business domain? We need to discover why the users need a currency
converter. If they need it for calculating the value of a payment in an-
other currency, for calculating payment for international customers, and
for calculating an offered price of the product, then monetary value will
be a better candidate for a business pattern than a currency converter.

Behavioral Patterns Are Large Units of Functionality

If application designers develop a single business application for a specific
purpose, they probably do not care about reuse. If user requirements
change, the designers just change the application. However, if the applica-
tion designers are developing a framework that will be used to configure
several business applications in a product line, or to configure several very
different business applications, then they would like to identify the func-

234 5 Patterns

tionality that is most complex and difficult to implement. Then, they can
implement this functionality once in the reusable framework, and config-
ure the actual software applications.

In such an environment, the more the complex and difficult functional-
ity is implemented in the framework, the easier the job becomes for the
application designers in configuring the actual business applications, and
the less the overall amount of work (framework development plus applica-
tion development).

Therefore, the more the larger, and most complex and most difficult
units of functionality is implemented as behavioral patterns, the easier the
job of the application designers becomes. They can then focus on under-
standing and modeling users’ business problems, rather than on imple-
menting them.

Behavioral Patterns Often Crosscut Structural Patterns

Behavioral patterns often crosscut structural patterns; therefore, if a user
requires new functionality or a new data field on an REA entity, this will
probably require some collaboration with data on other REA entities.

An example is address. In many business applications customer and
vendor entities have addresses, such as shipping address and billing ad-
dress. However, the addresses are also properties of the purchase order,
sales order, and invoice. Therefore, it is useful to think of an address as a
module having two elements: the default address on an economic agent,
and the actual address on an economic event.

The address pattern presented in this book even has different design, in
which the default address is dynamically derived from historical informa-
tion specified by economic events. Nevertheless, in both cases the address
element crosscuts the entities that originate from the domain categories.

6 An Aspect-Based Example Application

By Christian Vibe Scheller

6.1 Setting up the Application Model

In this chapter I will describe how a simple application can be built using
aspects. While the example given is very simple, it will hopefully give an
idea about the possible complexity of the applications that can be created
using the methods described.

The examples described in this chapter are based on a very simple task
management system developed in C#. Using the system it should be possi-
ble to register tasks. If the task is not completed after a specific time period
(e.g., 20 days after the task registration) the system will send a reminder to
a specified e-mail address.

For the sake of completeness it should be noted that the tasks managed
by this application can actually be thought of as commitments in the REA
model. Since this chapter focuses on the use of aspect patterns, however,
this knowledge is not used in the examples.

What we want to do is to assemble the task management system from
aspects each encapsulating part of the business logic that makes up the sys-
tem. Using the aspects described in the previous chapters we could end up
with something like this:

public class Task {
public Identifier ID =

new Identifier("TaskIdSequence", 10000, 1000);
 public Description Text = new Description();

public DueDate Due = new DueDate(20);
public Notification Notify = new Notification();

}

In this example each aspect is defined as a class. The domain class itself
is composed of aspects. The metadata used to specify the behavior of each
aspect is simply specified as parameters to the aspect’s constructor.

236 6 An Aspect-Based Example Application

What we see is that the Task has an Identifier which automatically gen-
erates a sequence number given a seed of 10000 and a step of 1000. In
other words, the first task is called ‘10000’, the next ‘11000’ and so on.
The string TaskIdSequence specified in the Identifier’s constructor is nec-
essary for implementation reasons because the Identifier class does not
know its context and is therefore not able to distinguish the ID of a task
from the ID of an employee, sales order, etc. By assigning a unique text
string to the identifier, it can use this text string to create different number
series for different classes.

An alternative to this solution would be to inform the Identifier of its
context:

ID.Context = this;

It is in many ways desirable, however, that the aspects should not know
their context. This is primarily due to their nature as cross-cutting con-
cerns. Experience shows that if the context is not known by the aspect the
chances of creating a truly “reusable” aspect is greater.

The task also has a description, called Text. In the example the descrip-
tion is just a simple text string of arbitrary length. The description does not
require any specific metadata.

The DueDate describes the date on which the task must be completed or
else the system will send a reminder to the responsible person. The imple-
mentation of the DueDate aspect includes a simple activation rule that cal-
culates the activation date by adding 20 days to the current date.

Finally the Notification aspect is responsible for sending the reminder to
the responsible person. In this very simple example only the e-mail type of
notification is supported and the responsible person’s e-mail address is
simply assigned explicitly (e.g., through the user interface) to the notifica-
tion aspect.

A small problem with the way the example is implemented is that some
of the metadata is specified directly as parameters to the aspects’ construc-
tors. This makes it difficult for other components to gain access to the
metadata through reflection. We are in other words “hiding” part of our
domain model by hard coding it into the class. A somewhat better solution
would be to use .Net attributes to specify the metadata:

public class Task {
 [Identifier.Definition(Seed = 10000, Step = 1000)]

public Identifier ID = new Identifier();
 …
 …
}

6.2 Creating the Aspect Code 237

This is a very nice solution because it allows the metadata to be re-
trieved through reflection. It does however also make the aspect code more
complicated because there is no easy way for an aspect class to retrieve the
attributes set on a specific property or field. In order to get this to work it
would again be necessary for each aspect to know its context. Later in this
chapter a solution to this problem will be described.

6.2 Creating the Aspect Code

In the task management system described it would probably be overkill to
actually write the code for each aspect instead of just including it in the
domain class itself. The idea is however that these aspects can be reused
over and over again within the same application or even across applica-
tions. The aspects can be seen as the business logic equivalents to visual
basic controls.

Fig. 158. Visual Basic 3.0 development environment with visual basic controls

Visual Basic controls have become popular in the development commu-
nity because it is extremely simple to create a Windows form by dragging
a number of controls onto the form. Often these controls will be very pow-
erful grid controls with spreadsheet functionality, image controls with ad-
vanced imaging capabilities and so on. By choosing the right control for
the job the developer can minimize the amount of code he needs to write.

238 6 An Aspect-Based Example Application

Similarly the idea behind aspects is that it should be easy to assemble a
domain class from aspects. Each aspect should ideally contain much of the
code that the developer would otherwise have to write explicitly on the
domain class itself.

Obviously the aspect implementations given in the example are very
simple, but they could easily be extended. For instance the Identification
aspect could contain code that checked the ID for uniqueness; it could con-
tain different algorithms for generating IDs (GUIDs, Initials, specially
formatted IDs such as social security numbers, etc.) and it could contain
hashing algorithms for easy retrieval of objects based on their ID.

6.3 The Identification Aspect

Let’s start with the Identification aspect:
In order to keep the example code simple only a subset of the identifica-

tion aspect’s functionality has been implemented, namely an Identification
aspect with AutoNumber, Unique and Mandatory implicitly set to yes and
only the NumberSeries rule implemented.

For the purpose of this example, this is what the Identification aspect
might look like:

public class Identifier {
 public int Value;

private static Dictionary<string, int> LastValue =
new Dictionary<string,int>();

 public Identifier(string sequence, int seed, int step) {
if (LastValue.ContainsKey(sequence)) {

 Value = LastValue[sequence] + step;
 } else {
 Value = seed;

 }
 LastValue[sequence] = Value;

 }
}

6.4 The Due Date Aspect

The implementation of the Due Date aspect implements a simple activa-
tion rule that adds a number of days to the current date. The implementa-
tion does not deal with durations.

With these limitations, the Due Date aspect might look like this:

6.4 The Due Date Aspect 239

public class DueDate {
 public enum States { Active, Due, Completed, Canceled }

public DateTime Date;
public States State = States.Active;
public event EventHandler Due;
public event EventHandler Completed;
public event EventHandler Canceled;

 private static List<DueDate> DueDates = new List<DueDate>();

public DueDate(int days) {
 Date = DateTime.Now.AddDays(days);
 DueDates.Add(this);
 }

public static void Check(DateTime date) {
foreach (DueDate dueDate in DueDates) {

if (dueDate.Date < date &&
 dueDate.State == States.Active) {
 dueDate.State = States.Due;

if (dueDate.Due != null) {
 dueDate.Due(dueDate, null);
 }
 }
 }
 }

public void Complete(object sender, EventArgs e) {
 State = States.Completed;

if (Completed != null) {
 Completed(this, null);
 }
 }

public void Cancel(object sender, EventArgs e) {
if (State == States.Active) {

 State = States.Canceled;
if (Canceled != null) {

 Canceled(this, null);
 }
 }
 }
}

There are a few things to note about the Due Date aspect: First of all it
provides the three event handlers: Due, Complete and Canceled. These
event handlers get called by the Due Date aspect when its state changes to
Due, Completed and Canceled respectively.

The Due Date aspect also implements the state diagram illustrated in
Fig. 159.

The static Check() method is meant to be called from time to time to
check if any Due Date aspect has reached its due date without being com-
pleted or cancelled. The Check() method will then raise the Due event and
change the Due Date aspect’s state to Due. The Check() method uses a

240 6 An Aspect-Based Example Application

static list called DueDates to keep track of all the DueDates that have been
created.

Fig. 159. State diagram of the due date aspect

6.5 The Notification Aspect

The implementation of the Notification aspect only supports the e-mail
type of notification. Furthermore the responsible person’s e-mail address is
simply assigned explicitly (e.g., through the user interface) to the notifica-
tion aspect.

This is what the Notification aspect might look like:

public delegate string MessageHandler();

 public class Notification {
 public string EMailAddress;

public event MessageHandler Message;

public void Notify(object sender, EventArgs e) {
 if (Message == null) {

MessageBox.Show("Notification caused by " +
 sender, EMailAddress);
 } else {

MessageBox.Show(Message(), EMailAddress);
 }
 }
 }
}

6.6 The Description Aspect 241

The Notification aspect consists of a simple text string containing the
email address of the recipient and a method called “Notify” that causes the
Notification aspect to send a notification to the recipient.

The message handler called Message allows the developer to specify the
message that the Notification aspect should send to the recipient by provid-
ing a delegate to the Notification aspect. The Notification aspect provides
a default message in case the developer has not specified a message dele-
gate.

6.6 The Description Aspect

The implementation of the Description aspect only supports textual de-
scriptions. The implementation of the Description aspect simply looks like
this:

public class Description {
 public string Value;
}

6.7 Interchanging Events Between Aspects

The last thing we need to do in order to get our little task management sys-
tem to work is to link the Notification aspect to the DueDate aspect so that
notifications will be sent out when the due date is reached. This is done by
providing a delegate to the Notification aspect’s Notify method to the
DueDate’s Due event.

public class Task {
public Identifier ID =
 new Identifier("TaskSequence", 10000, 1000);

 public Description Text = new Description();
 public DueDate Due = new DueDate(20);
 public Notification Notify = new Notification();

public Task() {
 Due.Due += new EventHandler(Notify.Notify);
 }
}

Now everything is in place. The DueDate aspect will monitor the task
and if the task is not completed before the due date it will invoke its “Due”
event handler. The Notification aspect in turn will receive the “Due” event
and react by sending an e-mail message to the recipient.

242 6 An Aspect-Based Example Application

The message could either be the default message “Notification caused
by DueDate” or it could be a specific message drawing on the task descrip-
tion:

public class Task {
public Identifier ID =
 new Identifier("TaskSequence", 10000, 1000);

 public Description Text = new Description();
 public DueDate Due = new DueDate(20);
 public Notification Notify = new Notification();

 public Task() {
 Due.Due += new EventHandler(Notify.Notify);
 notify.Message += delegate {

return Text.Value + " is due";
 };
 }
}

The use of event handlers as the means of communication creates a pub-
lisher/subscriber pattern making sure that the aspects are loosely coupled.
This is an important factor in making sure that the aspects are reusable be-
tween domain classes.

The type of interaction exemplified by the notification message, where
data is sent from one aspect to another, and in the case of the notification
message even reformatted, is probably the most complex part of the as-
pect-based development method. This is where the developer needs to ac-
tually write code on the application model-level itself rather than relying
on the aspects to do the work.

Again comparing aspects to Visual Basic controls, this is the equivalent
of writing Visual Basic code on a button’s event handler.

6.8 Constructing the User Interface

One of the main benefits of using aspects is that they are truly cross cutting
concerns. In our little model of a task management system we have used
C# code to describe the definition of a task, but the definition goes further
than that. Let us recapitulate: A task is defined by its aspects. In the case of
the example application tasks are defined as:

6.8 Constructing the User Interface 243

Task
Class

Fields

Deadline : DueDate
ID : Identifier
Notify : Notification
Text : Description

Fig. 160. Task class

We can use this definition to derive a number of artifacts: user interface,
storage model, documentation, etc. Every one of these artifacts can be seen
as a view of the domain model. By using the domain model we can easily
construct this rather crude user interface:

Fig. 161. User interface of task aspect

The user interface is constructed by iterating through the task’s aspects
and letting each aspect contribute with its own part of the user interface.
This is done in the code below:

foreach (FieldInfo fieldInfo in typeof(Task).GetFields()) {
 AspectControl control = null;

switch (fieldInfo.FieldType.Name) {
case "Description": {

 control = new DescriptionControl();
break;

244 6 An Aspect-Based Example Application

 }
case "Identifier": {

 control = new IdentifierControl();
break;

 }
case "DueDate": {

 control = new DueDateControl();
break;

 }
case "Notification": {

 control = new NotificationControl();
break;

 }
default: {

continue;
 }
 }
 panel1.Controls.Add(control);
 control.Dock = DockStyle.Top;
 control.BringToFront();
 control.Initialize(fieldInfo.GetValue(obj), fieldInfo.Name);
}

Each aspect has a corresponding user interface part (implemented as a
user control) that is added to the user interface at runtime.

One importing thing to note is that as the aspects get more elaborate and
encapsulate more and more of the business logic, the user interface com-
ponents will also get more and more elaborate and become small “applica-
tions” in themselves rather than just a bunch of textboxes.

The picture below shows a typical screen from Microsoft Navision™.
While Microsoft Navision™ does not use aspects explicitly it is obvious
that aspect patterns exist per se in the user interface:

6.9 A Model-Based Framework 245

Fig. 162. Behavioral patterns in Microsoft Navision

6.9 A Model-Based Framework

Until now we have based our task management example on code; in this
case written in C#. In the following chapter I will describe an alternative
solution: Namely to specify the domain class in an XML document.

In our example we will create an XML document that looks like this:

246 6 An Aspect-Based Example Application

<Class name="Task" type="Commitment">
 <Aspects>
 <Identifier name="ID" seed="10000" step="1000"/>
 <Description name="Text" />
 <DueDate name="Deadline" days="20"/>
 <Notification name="Notify"/>
 </Aspects>
 <Subscriptions>
 <Subscription source="Deadline" sourceevent="Due"
 target="Notify" targetevent="Notify" />
 </Subscriptions>
 <Delegates>
 <Delegate target="Notify" property="Message">
 return Text.Value + " is due";
 </Delegate>
 </Delegates>
</Class>

The XML document contains a single Class tag with the attribute name
having the value Task. This tells the reader that the task management sys-
tem contains a single domain class with the name Task. The Class tag con-
tains three sections.

The first section is qualified with an Aspects tag. This section contains
the definitions of each of the aspects that the task consists of. In this case
we already know the aspects from the previous chapter, namely ID, Text,
Deadline and Notify. Metadata for each aspect is expressed as attributes to
the corresponding XML tag.

Note that the text string TaskIdSequence, which had to be included
when we used C# is no longer necessary when we use XML. The reason
for this is that the context of the aspect’s metadata is freely available in the
XML document.

The second section is qualified with a Subscriptions tag. This section
contains all the subscriptions inside the domain class. As we remember, a
subscription connects an event raised by one aspect to an event handler on
another aspect. In our example only one subscription exists inside the sub-
scription section: The Due event of the Deadline aspect is connected to the
Notify event handler of the Notify aspect.

The final section is qualified with a Delegates tag. This section contains
small chunks of code that get called by the aspects on specific occasions.
In the example a single delegate is created that returns a text string when-
ever the Notify aspect needs to know its Message.

As we can see there is no real difference between the semantics de-
scribed in the original C# code and in the XML document. The real differ-
ence is that XML is much easier to read and manipulate through XPath and
XSL stylesheets. It is also easy to validate that the XML document is syn-
tactically correct by using an XML schema.

6.9 A Model-Based Framework 247

Let us start by (re)creating the C# code for the domain class using the
following XSL stylesheet:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="text" />

<!—
This is the main body of the class
-->
<xsl:template match ="/Class">

public class <xsl:value-of select ="@name"/> {
 <xsl:apply-templates select="Aspects/*" />
 public <xsl:value-of select ="@name"/>() {
 <xsl:apply-templates select="Subscriptions/Subscription"/>
 <xsl:apply-templates select ="Delegates/Delegate"/>
 }
 }
 </xsl:template>

 <!--
 each aspect provides its own code snippet.
 in practice the code only consists of a field declaration.
 the actual code is placed in a separate aspect class

-->

 <xsl:template match="Identifier">
 public Identifier <xsl:value-of select="@name"/> =
 new Identifier("<xsl:value-of select="../../@name" />" +
 "<xsl:value-of select="@name"/>Sequence",
 <xsl:value-of select="@seed"/>,
 <xsl:value-of select ="@step"/>
);
 </xsl:template>

 <xsl:template match="Description">
 public Description <xsl:value-of select="@name"/> =
 new Description();
 </xsl:template>

 <xsl:template match="DueDate">
 public DueDate <xsl:value-of select="@name"/> =
 new DueDate(<xsl:value-of select="@days"/>);
 </xsl:template>

 <xsl:template match="Notification">
 public Notification <xsl:value-of select="@name"/> =
 new Notification();
 </xsl:template>

248 6 An Aspect-Based Example Application

 <!--
the Map section provides the weaving between event sources
and event targets
-->

 <xsl:template match ="Subscription">
 <xsl:value-of select ="@source"/>.

<xsl:value-of select ="@sourceevent"/> +=
<xsl:value-of select ="@target"/>.
<xsl:value-of select ="@targetevent"/>;

 </xsl:template>

 <xsl:template match="Delegate">
 <xsl:value-of select="@target"/>.

<xsl:value-of select="@property"/> +=
 delegate {
 <xsl:value-of select ="text()"/>;
 };

</xsl:template>
</xsl:stylesheet>

By applying the stylesheet to the XML document, the following output
is produced (the output has been reformatted for easier reading. It is
somewhat difficult to get style sheets to create exactly the indentations and
line breaks you want. This is usually no problem however because most
compilers disregard indentations and line breaks anyway):

public class Task {
public Identifier ID =

new Identifier("TaskIDSequence", 10000, 1000);
public Description Text = new Description();
public DueDate Deadline = new DueDate(20);
public Notification Notify = new Notification();

public Task() {
 Deadline.Due += Notify.Notify;
 Notify.Message += delegate {

return Text.Value + " is due";
 };

}
}

This is exactly the same code that we created manually in the beginning
of the chapter. But now that we have an XML document describing our
domain class we may as well create a static user interface instead of rely-
ing on reflection. We can achieve this by using the following XSL
stylesheet:

6.9 A Model-Based Framework 249

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="text"/>
 <xsl:template match ="Class" xml:space ="preserve">
 public partial class Form1 : Form {
 public Form1(<xsl:value-of select ="@name" />
 <xsl:value-of select="@name"/>) {
 InitializeComponent();
 Padding = new Padding(5);
 <xsl:for-each select ="Aspects/*">
 <xsl:value-of select ="name()" />Control

<xsl:value-of select ="@name" /> =
 new <xsl:value-of select ="name()" />Control();
 <xsl:value-of select ="@name" />.Dock = DockStyle.Top;
 <xsl:value-of select ="@name" />.Initialize(
 <xsl:value-of select ="../../@name" />.

<xsl:value-of select ="@name" />,
 "<xsl:value-of select ="@name" />"
);
 Controls.Add(<xsl:value-of select ="@name" />);
 <xsl:value-of select ="@name" />.BringToFront();

</xsl:for-each>
 }
 }

</xsl:template>
</xsl:stylesheet>

Applying this stylesheet to the XML document produces the following
output:

public partial class Form1 : Form {
 public Form1(Task Task) {
 InitializeComponent();
 Padding = new Padding(5);

 IdentifierControl ID = new IdentifierControl();
 ID.Dock = DockStyle.Top;
 ID.Initialize(Task.ID,"ID");
 Controls.Add(ID);
 ID.BringToFront();

 DescriptionControl Text = new DescriptionControl();
 Text.Dock = DockStyle.Top;
 Text.Initialize(Task.Text, "Text");
 Controls.Add(Text);
 Text.BringToFront();

DueDateControl Deadline = new DueDateControl();
 Deadline.Dock = DockStyle.Top;
 Deadline.Initialize(Task.Deadline, "Deadline");
 Controls.Add(Deadline);
 Deadline.BringToFront();

250 6 An Aspect-Based Example Application

 NotificationControl Notify = new NotificationControl();
 Notify.Dock = DockStyle.Top;
 Notify.Initialize(Task.Notify, "Notify");
 Controls.Add(Notify);
 Notify.BringToFront();
 }
}

This code is different from the user interface code that we created previ-
ously. The difference is that we do not use reflection but instead create
each aspect control explicitly. Because this code is automatically generated
using the XSL stylesheet we still maintain the ability of the user interface
to adapt to any domain class without having to rewrite the code manually.

Let me demonstrate this by applying a small change to our task man-
agement system: I want the system to send me a reminder five days before
the task is due. I can do this by just adding another DueDate aspect to the
Task class and providing a few new subscriptions:

<Class name="Task">
 <Aspects>
 <Identifier name="ID" seed="10000" step="1000"/>
 <Description name="Text" />
 <DueDate name="Reminder" days="15"/>
 <DueDate name="Deadline" days="20"/>
 <Notification name="Notify"/>
 </Aspects>
 <Subscriptions>
 <Subscription source="Deadline" sourceevent="Due"
 target="Notify" targetevent="Notify" />
 <Subscription source="Deadline" sourceevent="Completed"

target="Reminder" targetevent="Cancel" />
 <Subscription source="Reminder" sourceevent="Due"

target="Notify" targetevent="Notify" />
 </Subscriptions>
 <Delegates>
 <Delegate target="Notify" property="Message">
 if (Deadline.State == DueDate.States.Due) {
 return Text.Value + " is due";
 } else {
 return Text.Value + " will be due on " + Deadline.Date;
 }
 </Delegate>
 </Delegates>
</Class>

The first new subscription instructs the Reminder to be cancelled if the
user marks the Deadline as completed. This is important because otherwise
the user would receive a reminder even if she had already completed the
task. The other new subscription instructs the Notify aspect to send the
user an Email when the Reminder aspect raises its Due event.

6.10 Storage 251

A small change has also been made to the notification message delegate.
The purpose of this change is to make sure that the user knows whether the
task is already due or if the notification is just a reminder.

By reapplying the two XSL stylesheets specified above to recreate the
domain class and the user interface respectively we end up with the user
interface shown in Fig. 163.

Fig. 163. User interface of the task aspect

6.10 Storage

The final issue that we need to address in order to have a completely
working task management system is how to store and retrieve the tasks
from a database.

We could of course use a “traditional” O/R mapper (such as NHibernate
or Gentle.Net) for this task, but we could also take advantage of the fact
that we already have a domain model of our system to create the storage
code ourselves.

The first question that we need to answer is: how should the tasks be
stored in the database?

The easiest solution to this question is to create a Task table with the
columns shown in Fig. 164:

252 6 An Aspect-Based Example Application

Task

ID int

DeadlineDate datetime

DeadlineState int

Notify varchar(50)

Text ntext

Column Name Data Type

Stores the state of the ID
aspect. Because the ID is an
Identification aspect this
becomes the table’s primary
key

Stores the state
of the Deadline
aspect

Stores the state
of the Notify
aspect

Stores the state
of the Text aspect

Fig. 164. A task table

What we need to do now is to create an XSL stylesheet that will provide
the necessary code to store and retrieve Tasks from this table. To keep the
example simple only the “create” and “retrieve” methods of the CRUD in-
terface will be provided:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="text"/>
 <xsl:template match ="Class" xml:space ="preserve">
 public class <xsl:value-of select="@name"/>Facade {
 public static List<<xsl:value-of select="@name"/>>
 GetAll(SqlConnection connection) {
 List<<xsl:value-of select="@name"/>> result =
 New List<<xsl:value-of select="@name"/>>();
 SqlCommand command = connection.CreateCommand();
 command.CommandText = @"select
 <xsl:for-each select="Aspects/*">
 <xsl:choose>
 <xsl:when test ="name() = 'DueDate'">
 <xsl:value-of select="@name"/>Date,
 <xsl:value-of select ="@name"/>State
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select ="@name"/>
 </xsl:otherwise
 </xsl:choose>
 <xsl:if test="position() != last()">,</xsl:if>
 </xsl:for-each>
 from <xsl:value-of select="@name"/>";
 using (SqlDataReader reader = command.ExecuteReader()) {

6.10 Storage 253

 while (reader.Read()) {
 <xsl:value-of select="@name"/> item =
 new <xsl:value-of select="@name"/>();
 <xsl:for-each select="Aspects/*">
 <xsl:choose >
 <xsl:when test="name() = 'DueDate'">
 item.<xsl:value-of select ="@name"/>.Date =
 (DateTime) reader["

<xsl:value-of select ="@name"/>Date"];
 item.<xsl:value-of select ="@name"/>.State =
 (DueDate.States) reader["

<xsl:value-of select ="@name"/>State"];
 </xsl:when>
 <xsl:when test="name() = 'Identifier'">
 item.<xsl:value-of select ="@name"/>.Value =
 (int) reader["<xsl:value-of select ="@name"/>"];
 </xsl:when>
 <xsl:when test ="name() = 'Notification'">

item.<xsl:value-of select ="@name"/>.
 EMailAddress = (string) reader["

<xsl:value-of select ="@name"/>"];
 </xsl:when>
 <xsl:otherwise>
 item.<xsl:value-of select ="@name"/>.Value =
 (string) reader["

<xsl:value-of select ="@name"/>"];
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each>

result.Add(item);
}
}
return result;

 }

 public static void Insert(
<xsl:value-of select ="@name"/> item,

 SqlConnection connection) {
 SqlCommand command = connection.CreateCommand();
 command.CommandText =
 @"insert into <xsl:value-of select ="@name"/> (
 <xsl:for-each select="Aspects/*">
 <xsl:choose >
 <xsl:when test="name() = 'DueDate'">
 <xsl:value-of select ="@name"/>Date,
 <xsl:value-of select ="@name"/>State
 </xsl:when>
 <xsl:otherwise >
 <xsl:value-of select ="@name"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:if test ="position() != last()">,</xsl:if>
 </xsl:for-each>
) values (
 <xsl:for-each select="Aspects/*">
 <xsl:choose >
 <xsl:when test="name() = 'DueDate'">
 @<xsl:value-of select ="@name"/>Date,

254 6 An Aspect-Based Example Application

 @<xsl:value-of select ="@name"/>State
</xsl:when>

 <xsl:otherwise >
 @<xsl:value-of select ="@name"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:if test ="position() != last()">,</xsl:if>
 </xsl:for-each>
)";
 <xsl:for-each select ="Aspects/*">
 <xsl:choose >
 <xsl:when test="name() = 'DueDate'">
 command.Parameters.AddWithValue(
 "@<xsl:value-of select ="@name"/>date",
 item.<xsl:value-of select ="@name"/>.Date
);
 command.Parameters.AddWithValue(
 "@<xsl:value-of select ="@name"/>state",
 item.<xsl:value-of select ="@name"/>.State
);
 </xsl:when>
 <xsl:when test="name() = 'Notification'">
 command.Parameters.AddWithValue(
 "@<xsl:value-of select ="@name"/>",
 item.<xsl:value-of select ="@name"/>.EMailAddress
);
 </xsl:when>
 <xsl:otherwise>
 command.Parameters.AddWithValue(
 "@<xsl:value-of select ="@name"/>",
 item.<xsl:value-of select ="@name"/>.Value
);

</xsl:otherwise>
 </xsl:choose>
 </xsl:for-each>
 command.ExecuteNonQuery();
 }
 }
 </xsl:template>
</xsl:stylesheet>

Admittedly this stylesheet is a bit complicated due to its multiple for-
each tag, but the output is still very simple (and hopefully readable):

public class TaskFacade {
 public static List<Task> GetAll(SqlConnection connection) {

List<Task> result = new List<Task>();
 SqlCommand command = connection.CreateCommand();
 command.CommandText = @"select ID,
 Text,
 DeadlineDate,
 DeadlineState,
 Notify
 from Task";

using (SqlDataReader reader = command.ExecuteReader()) {
while (reader.Read()) {

Task item = new Task();

6.11 Storing Aspect Data in Separate Tables 255

 item.ID.Value = (int)reader["ID"];
 item.Text.Value = (string)reader["Text"];
 item.Deadline.Date =(DateTime)reader["DeadlineDate"];
 item.Deadline.State =
 (DueDate.States)reader["DeadlineState"];
 item.Notify.EMailAddress = (string)reader["Notify"];
 result.Add(item);
 }
 }

return result;
 }

public static void Insert(Task item, SqlConnection connection) {
SqlCommand command = connection.CreateCommand();

 command.CommandText = @"insert into Task (ID,
 Text,
 DeadlineDate,
 DeadlineState,
 Notify
) values (@ID,
 @Text,
 @DeadlineDate,
 @DeadlineState,
 @Notify
)";
 command.Parameters.AddWithValue("@ID", item.ID.Value);
 command.Parameters.AddWithValue("@Text", item.Text.Value);
 command.Parameters.AddWithValue("@Deadlinedate",
 item.Deadline.Date);
 command.Parameters.AddWithValue("@Deadlinestate",
 item.Deadline.State);
 command.Parameters.AddWithValue("@Notify",
 item.Notify.EMailAddress);
 command.ExecuteNonQuery();
 }
}

The nice thing about this code is that by reapplying the XSL stylesheet
to the XML document representing the domain model we can always cre-
ate storage code that reflects the domain model’s actual definition. There is
a catch however: While the storage code is automatically updated, this is
not the case with the table definition itself. It is of course possible to auto-
matically create the change scripts necessary to update the table definition
as well, but often the database is considered such a valuable asset that
changes to its definition are required to be done manually.

6.11 Storing Aspect Data in Separate Tables

Consider the following situation: In a system we have a large number of
DueDate aspects spread out over a number of different domain classes.
Employees have DueDates for employee reviews, salary adjustments, bo-

256 6 An Aspect-Based Example Application

nus payments, etc. Sales orders have DueDates for payment date, shipment
date, etc. In order to find out which of these DueDates are due we need to
select data from a huge amount of tables in the database.

SELECT id FROM employee WHERE employeereviewdate < SYSDATE
AND employeereviewstate = ‘Active’

SELECT id FROM employee WHERE salaryadjustmentdate < SYSDATE
AND salaryadjustmentstate = ‘Active’

SELECT id FROM salesorders WHERE paymentdate < SYSDATE
AND paymentstate = ‘Active’
…
…
…

Wouldn’t it be nice if all the DueDates were collected in a single table?
If this was the case, we could easily retrieve due DueDates using a SQL
statement similar to the following:

SELECT class, id FROM duedates WHERE date < SYSDATE
AND state = ‘Active’

By applying this idea in the extreme, we could come up with a database
model where each aspect had its own table. Such a database model would
look like the model in Fig. 165.

DomainObject *
Class

ID

Description *
Class

ID

Name

Value
DueDate *

Class

ID

Name

Date

State

Notification *
Class

ID

Name

EMailAddress

Fig. 165. Generic database model

There are some benefits to this way of storing data and some drawbacks.
First the benefits:

6.11 Storing Aspect Data in Separate Tables 257

Interestingly it often makes sense to look at an aspect across its domain
classes: DueDates can be plotted in a calendar so that events coming up
can be spotted beforehand, Locations can be plotted on a map as “points
of interest”, and Notifications can be interesting to the recipient as part
of the question “what am I currently subscribing to?”. Such requests that
crosscut several domain classes will usually perform better if all the as-
pects’ data are stored in a single table.
The database model does not change even when changes are made to the
domain model. This makes it easier to deploy changes to the domain
model.

The drawbacks are:

Selecting a single object from the database requires several select state-
ments. This has a certain impact on performance.
Creating complex “where”-clauses can become almost impossible. It is
also very difficult to write SQL statements that perform well if the
“where”-clause spans several aspects (e.g., finding all tasks with a due
date in November and with the description containing the text “phone”)
because the database’s execution planner will often resolve this type of
query by performing a Cartesian join.
Often system integration is performed on a database level. Without the
domain model to “decrypt” the database it will be very difficult for other
applications to make sense of the data in the database.

All in all the best solution will probably be to stick to the conventional
way of storing data and perhaps supplement this by creating redundant
“aspect” tables where it is deemed necessary.

Part III Modeling Handbook

Part I of this book, Structural Patterns described the basic concepts of the
REA modeling framework, and how it can be used to create an REA appli-
cation model of a business system. Part II, Behavioral Patterns, described
how the application model can be extended to support specific functional-
ity that originates in user requirements.

Our experience shows that usually the most difficult modeling task is to
design an REA application model. Once the application model is created, it
is usually straightforward to extend it with existing behavioral patterns.
REA leads application designers to the solution that conforms to the laws
of the business domain; it is not always straightforward and easy to create
application models that follow the domain rules. To make a sound REA
model, the application designers must often think deeply before they dis-
cover the essence of the customer’s business.

 In this part, Modeling Handbook, we will illustrate examples of REA
application models for elementary exchanges, elementary conversions,
value chains with exchange and conversion processes, and REA models
with contracts.

The first and second sections illustrate REA models of elementary ex-
change and conversion processes at the operational level. The third section
shows examples of processes at the operational level where the model con-
tains both conversion and exchange processes. The fourth section, Proc-
esses with Contracts, illustrates examples of REA models at policy level,
which include types, groups, commitments, contracts, and schedules, in
addition to economic events, resources, and agents.

7 Elementary Exchange Processes

This section illustrates REA models of exchange processes at the opera-
tional level. These models contain economic events, economic resources,
and economic agents in exchange processes. We describe the REA models
for the following exchange processes: Cash Sale, Product Return, Dis-
counts, Loan and Rent, and Financing.

262 7 Elementary Exchange Processes

7.1 Cash Sale

The sales process is one of creating revenue; therefore, every company has
a process similar to sales. The only exception might be non-profit organi-
zations, but they also have a process of providing services or goods. For
organizations receiving donations, the recipient economic agent of these
services or goods is different from the economic agent providing cash, but
the basic model remains the same.

Cash Sale is the simplest version of the sales process, and is applicable
to sales in shops or sales to walk-in customers.

Problem

How do we create an REA application model for the cash sale process?

Solution

A sales process is an exchange of products for cash. The value chain
model for a cash sale process is illustrated in Fig. 166.

Fig. 166. Value chain model for the cash sale process

The REA model in Fig. 167 illustrates a scenario known from retail
shops, where a customer buys a product and pays cash. This scenario does
not require modeling contracts such as a sales order.

7.1 Cash Sale 263

This model contains two economic events: Sale and Cash Receipt. The
economic event Sale is related through an exchange duality with economic
event Cash Receipt. Each instance of Sale is related to exactly one Prod-
uct. Sale represents change of ownership of Product from enterprise to
Customer. Likewise, each instance of Cash Receipt is related to exactly
one Cash instance, which represents, for example, an amount of money in
a specific currency.

In general, the relationship between Sale and Cash Receipt is many-to-
many; several instances of Sale (a sale of several products) can be related
to several instances of Cash Receipt (for example, customer pays cash in
different currencies).

As Sale does not have to happen at exactly the same time as Cash Re-
ceipt (for example, payment often occurs after entries of all goods go
through the cash register), the Claim represents the value of the imbal-
anced exchange duality. This value can be displayed on a cash register, or
made in some other way available to the participating economic agents.

Fig. 167. Sales Process

If a customer pays cash, he usually gives the enterprise an amount higher
than is claimed. The enterprise then returns the excess payment to the cus-
tomer to settle the claim. If users of business applications are interested in
keeping track of the money returned to customers, the model must be
modified by adding a decrement event, Cash Return, as shown in Fig. 168.
The economic agents are the same as in Fig. 167.

264 7 Elementary Exchange Processes

Cash return is possible also in the model illustrated in Fig. 167, but in
this model the business application does not keep track of the money re-
turned, while in the model in Fig. 168 it does.

Fig. 168. Cash sales with tracking cash returns

7.2 Product Return 265

7.2 Product Return

Many companies allow customers under certain conditions to return Pur-
chased products. Users of business applications would like to track and
create reports on economic events related to returns of products.

Problem

How do we model returns of purchased items?

Solution

The return of products can occur only if the products have already been
sold, and users of business applications might not consider it as a value-
adding process. Therefore, we model the return of products as an economic
event that is part of the sales process. Its value chain is shown in Fig. 169.

Fig. 169. Value chain for the sales process

The REA model for a sales process with the return of products is illus-
trated in Fig. 170. The exchange duality is a 4-ary relationship between
economic events Sale, Cash Receipt, Product Return, and Cash Return.
All four events contribute to the claim Amount to Pay; Sale and Cash Re-
turn increase the value of the claim and Product Return and Cash Receipt
decrease the value of the claim. The model specifies that the value of the

266 7 Elementary Exchange Processes

Sale plus Cash Return should be equal to the value of the Product Return
plus Cash Receipt.

When a customer returns a product (i.e., the enterprise accepts and reg-
isters the product return), a positive claim is raised, and business practice
determines how the enterprise is going to settle the claim.

The enterprise can materialize the claim, i.e., issue a credit note to the
customer.
The enterprise can sell to the customer another product, usually of the
same or equivalent type, that settles the claim.
The enterprise can return cash to the customer.

Some companies do not return the full purchase price of the product to
the customer in the case of a return. In the model in Fig. 170, this means
that the returned product has less value than the sold product. Conse-
quently, the amount of cash returned is less than the amount of cash re-
ceived.

Fig. 170. Sales process with return of products

If the product sold and returned is an individually identifiable item (its
quantity is measured in pieces as opposed to kilograms or joules), there is
a one-to-one relationship between the return event and the sale event. The
sale with product return can be considered a kind of sale, and the model
can be simplified, as shown in Fig. 171.

7.2 Product Return 267

Fig. 171. Return of individually identifiable items

The Sale event is now a time interval; at the beginning of the sale event,
the product’s ownership transfer from enterprise to customer, and at the
end of the interval, it transfers back from customer to enterprise. The Sale
event is still a decrement event, because it decreases the value of the prod-
uct for the enterprise for several reasons. For example, during the time in-
terval between sale and return, the product cannot be sold to another cus-
tomer.

268 7 Elementary Exchange Processes

7.3 Loan and Rent (Individually Identifiable Resources)

To rent an economic resource means to grant the possession of the re-
source in return for the payment of rent from the tenant, and for the tenant
to take and hold the resource (property, machinery, etc.) in return for the
payment of rent to the landlord or owner. The grant is always temporary;
the tenant must eventually return the rented resource to the owner; how-
ever, the length of the rental period can be unspecified.

Problem

What is loan and rent in the REA terms?

Solution

The loan or rent process is an exchange of rights to use an economic re-
source for cash. The value chain model for rental is illustrated in Fig. 172.
Note that the arrow means change of value of resources, not physical flow
of resources. Renting a property decreases its value for the owner; for ex-
ample, it cannot be rented during the rental period, or the owner does not
keep full rights to the rented resource. The owner receives cash in return.

Fig. 172. Value chain model for loan and rental

The REA model for rental and loan is illustrated in Fig. 173. The enter-
prise in this model is renting an economic resource, Property, in exchange
for Cash.

7.3 Loan and Rent (Individually Identifiable Resources) 269

Fig. 173. The REA application model for the rental process

A timing diagram with an example of one Rental and two Rent Pay-
ments is illustrated in Fig. 174.

time

Property is under the
control of the owner

Property is under the control of the enterprise

Property is under the
control of the owner

Cash is under the control
of the enterprise

Cash is under the control of the owner

Cash is under the control of the enterprise

Cash is under the control of the owner

Fig. 174. The timing diagram for an example of the rental process

The increment event Rental is an economic event with duration equiva-
lent to the rental period. At the beginning of this economic event, the usage
rights of the economic resource Property are transferred from the Owner to
the Enterprise, and at the end of this event the usage rights are transferred
back from the Enterprise to the Owner. The Rental event is paired through
an exchange duality with the instantaneous Rent Payment event, which
causes outflow of economic resource Cash. The exchange is a many-to-

270 7 Elementary Exchange Processes

many relationship. There can be several Rent Payment events for a single
Rental event. Also, several Rentals can be paid for by one or more Rent
Payments.

The rental process is similar to the financing process discussed in the
next chapter. However, the models for rental and financing are different;
compare Figs. 173 and 176. The reason for this difference is that Property
in Fig. 173 is an individually identifiable resource (received and returned
as a whole unit), while Cash in Fig. 176 is not.

7.4 Financial Loan (Nonindividually Identifiable Resources) 271

7.4 Financial Loan (Nonindividually Identifiable
Resources)

There are many ways an enterprise can receive the financial resources it
needs. We will illustrate a simple form of financing in which the enterprise
borrows money from the bank for a specific period. The bank receives in-
terest as a compensation for the loan. For the enterprise, the money it bor-
rows has more value than the interest; for the bank, the interest has more
value than the money it lends.

Problem

What is the financing process in REA terms?

Solution

The financing process is an exchange of cash for cash. The enterprise re-
ceives cash for a limited period of time. Eventually, it returns the cash and
also pays interest for the loan. The value chain model is illustrated in
Fig. 175.

Fig. 175. Value chain model for financing

The REA model for a financial loan is illustrated in Fig. 176. The enter-
prise receives an economic resource, Cash, in the Loan Receipt event. This
event is paired in duality with two economic events, Loan Return, in which
the Cash is returned back, and Interest Payment, in which the enterprise

272 7 Elementary Exchange Processes

pays additional cash to the bank as a compensation for the Loan. The
whole process can at runtime consist of several Loan Receipt events, sev-
eral Loan Return events, and several Interest Payment events. The dates
for these evens can be specified by commitments, which are part of the
contract. The REA model at the operational level does not contain any re-
strictions on the dates these events occur, or in what order, but commit-
ments that are part of the financing contract usually specify the Loan Re-
ceipt, Loan Return, and Interest Payment dates.

Fig. 176. The REA application model for financing

The financial loan is similar to the rental discussed in the previous chap-
ter. However, the models for rental and financing are different; compare
Figs. 173 and 176. Can we model rental using the model in Fig. 176?

The reason for the different models is that in the model in Fig. 173 the
resources are individually identifiable, while in the model in Fig. 176, they
are not. Generally, the REA models represent economic exchanges, i.e.,
some resources are exchanged for others. If we model rental according to
Fig. 176, i.e., with a model containing three economic events, instantane-
ous increment Start Property Rental, and instantaneous decrements End
Property Rental and Pay Rent, the pair Start Property Rental and End
Property Rental is not an exchange; the renter is returning the same prop-
erty back he rented. Therefore, we prefer to model the rental of a property
as one economic event with duration.

On the other hand, in the case of a loan, the economic resource Cash is
not individually identifiable; there is no way to determine whether the cash

7.4 Financial Loan (Nonindividually Identifiable Resources) 273

received is the same as the cash returned. In fact, banks usually allow rent-
ers to return a different Cash Type than the one they gave to the renter; for
example, a loan can be given as a check and returned by bank transfer.
Therefore, as received cash and returned cash might be different, Loan Re-
ceipt and Loan Return are different economic events in the case of Cash
and other resources that are not individually identifiable. For example,
gasoline loaned can be different one is returned (the individual molecules
in loaned and returned gasoline will be different), therefore, we would
model the loan of gasoline similarly to the model illustrated in Fig. 176.
The loan of gasoline would be one economic event, and its return another
economic event.

If the enterprise borrows an item (individually identifiable resource) and
buys another item of the same type, it is always possible to distinguish
which item is borrowed and which is owed. On the other hand, if the en-
terprise stores borrowed and owed cash in one bank account, it is impossi-
ble to distinguish the cash borrowed from the cash owed (the amounts of
owed and borrowed cash can be determined only by examining the eco-
nomic events that changed the amount of cash in this bank account). This
difference also indirectly explains why the two models are different.

Another, practical reason why the two models are different is that indi-
vidually identifiable resources must be returned complete, in one piece,
when the rental period ends. However, resources that are not individually
identifiable can be returned in different quantities. For example, a renter
can pay for the loan in installments. The model in Fig. 176 allows model-
ing the installments, while the model in Fig. 173 does not.

8 Elementary Conversion Processes

This section illustrates REA models of conversion processes at the opera-
tional level. CREATING A NEW PRODUCT is a fundamental conversion
process in which a new instance of an economic resource is created from
other resources.

If the conversion process consists of phases, and users of business appli-
cations would like to plan, monitor, and control the work in progress and
intermediate resources, the process can be split into finer-grain processes
in two different ways.

The CHAIN OF CONVERSION PROCESSES is essentially a sequence
of processes in which an intermediate product is created and then con-
sumed by the next process in the chain. This process is convenient if the
subsequent processes entirely change the identity of the resource.
The modeling approach MODIFYING A RESOURCE is suitable in
situations in which the process does not change the identity of the prod-
uct; for example, only makes some modification of it.

The concept of services in the process CREATING AND CONSUMING
SERVICES can be used to introduce a level of indirection into a chain of
processes, and to represent the results of some processes as a service. This
is useful, for example, in outsourcing some conversion processes, and will
be described in the section on combined models.

276 8 Elementary Conversion Processes

8.1 Creating a New Product

Almost every company has a process in which it creates a new service or
product. The new product or service is an economic resource, and for its
creation the enterprise uses or consumes other economic resources.

When creating an REA model for a conversion process, an application
designer must answer the following question.

Problem

How do we make an REA application model for a conversion process that
creates a new product?

Solution

The output of the conversion process is an economic resource that users of
a business application want to monitor and control. One of the outputs is a
product, but many conversion processes produce other resources, such as
waste. Whether or not to model these resources is a decision of the users of
the business application, and is the result of their needs for information
about these resources.

We will illustrate the process in a scenario in which the new product is
produced, and then inspected for quality. The assembly process encom-
passes all technological operations of assembling the product, using tools.
The assembled product is then inspected for defects.

In this scenario, users of a business application are not interested in
planning, monitoring and controlling the work in progress and intermedi-
ate resources. Therefore, the assembly and quality inspection are combined
into a single conversion process. The value chain model is shown in
Fig. 177.

8.1 Creating a New Product 277

Fig. 177. Value chain model for creating a new product

The REA application model for this process is illustrated in Fig. 178.
Resources consumed in this process are Part and Labor (they will not exist
after the end of the process), and Tool is a resource used (that can be used
again). The result of the process is the Product resource. In this example,
we have decided to model Part and Product as different entities. However,
in many business applications it is not always like this; there is often an
entity, usually called Item, that represents all economic resources of a
physical nature.

The Material Issue economic event consumes the Part resource. During
this economic event, the Part is transformed into the Product. The pro-
vider economic agent Employee is responsible for Part before it has been
issued, and the recipient agent Supervisor is responsible for Part until it
becomes part of the Product.

The Tools Usage economic event uses the economic resource Tool in
order to assemble and inspect the Product. In this example, we assume that
the tools are picked up by the workers and returned after the assembly
process is finished; we model the Enterprise as a provider agent, responsi-
ble for the Tool before and after the Tool Usage event, and model the
Worker as a recipient economic agent responsible for the tool during the
event.

The Labor Consumption economic event consumes the economic re-
source Labor and transforms it into the Product. The provider economic
agent is Supervisor, who is authorized to decide upon labor consumption
during the process. The recipient economic agent is Worker, who is re-
sponsible for his own labor during the Labor Consumption economic
event.

278 8 Elementary Conversion Processes

«receive»

«receive»

«provide»

«resource»
Part

«decrement»
Material Issue

«increment»
Assembly and

Inspection1 0..*

«consume»

«resource»
Product

1

0..*

«produce»

«decrement»
Tools Usage

«decrement»
Labor

Consumption

«resource»
Tool

1 0..*
«use»

«resource»
Labor 1 0..*

«consume»

0..*

0..*

0..*

0..*

«conversion»

«economic
agent»

Supervisor

«economic
agent»

Supervisor

«provide»

«economic
agent»
Worker

«receive»

«economic
agent»

Warehouse
Clerk

«receive»

«economic
agent»

Supervisor

«provide»

«economic
agent»
Worker

«provide»

Fig. 178. The REA model for creating a new product in a single process

An instance model is illustrated in Fig. 179. The resulting economic re-
source is Product with a serial number P3, assembled of two Parts with
serial numbers I22 and I23. These parts have been issued at times
7:20 a.m. and 7:25 a.m., respectively, by Warehouse Clerk Ethel, and
given to Worker Moe. Worker Moe came to work at 7:00 a.m., but started
work at 7:20 a.m., when he got the task and material from his Supervisor
Andy; the enterprise acquired Andy’s Labor from 7:00 a.m. to 15:00 a.m.,
but Consumed only 60 minutes, from 7:30 a.m. to 8:30 a.m., on Producing
the Product P3. The rest of Moe’s Labor was spent on activities beyond
the scope of the model in Fig. 179. At 7:40 a.m. Moe picked the Tool T5
and returned it back at 8:15 a.m. Andy started assembling and inspecting
the product at 7:50 a.m. and finished at 8:30 a.m.

8.1 Creating a New Product 279

«receive»

«receive»

«provide»

ID = I22

Part

Time = 7:20

«decrement»
Material Issue

Time = 7:50-8:30

«increment»
Assembly and

Inspection

«consume»

ID = P3

Product

«produce»

Time = 7:40-8:15

«decrement»
Tools Usage

Time = 7:30-8:30

«decrement»
Labor

Consumption

ID = T5

Tool
«use»

Time = 7:00-15:00

Labor «consume»

Name = Ethel

Warehouse Clerk

ID = Andy

Supervisor

«provide»

ID = Moe

«economic
agent»
Worker

«receive»

«receive»

ID = Andy

«economic
agent»

Supervisor

«provide»

Name = Moe

Worker

«provide»

ID = I23

Part

Time = 7:25

«decrement»
Material Issue

«consume»

«provide»

«conversion
duality»

«receive»

Fig. 179. An instance model for creating a product

The creation of a resource is not instantaneous. If users of business ap-
plications are interested in modeling various stages of the production, but
not interested in the intermediate products, they might use tasks to model
the production process at a finer level of granularity than that of the level
of economic events. We have not illustrated this modeling aspect in this
book; we intend to describe it on our web page.

The model in Fig. 178 does not have an entity for intermediate products,
work in process inventory and such. If users of business applications are
interested in planning, monitoring, and controlling the intermediate prod-
ucts within the production process, application developers must split the
production process into a chain of several value-adding processes. This is
illustrated in the models in the following pages.

280 8 Elementary Conversion Processes

8.2 Chain of Conversion Processes

Users of business applications are often interested in planning, monitoring,
and controlling intermediate products that are produced in various stages
of the overall production process.

Problem

How do we develop an REA application model that allows for planning,
monitoring, and control of intermediate products, under the assumption
that the intermediate products are consumed as they are converted to the
final product?

Solution

Split the overall conversion process into a chain of smaller conversion
processes. An economic resource produced in the first process is consumed
in the second process, and so on. The last process in the chain produces the
final product.

We will illustrate this approach on the same example as in the previous
chapter, but with the additional requirement that users of the business ap-
plication would like to keep track of the products that have been assembled
but have not been inspected for quality.

The production of a final product consists of two processes: the assem-
bly process creates the assembled product, and the inspection process con-
sumes the assembled product and creates the final product. The value
chain model is shown in Fig. 180.

8.2 Chain of Conversion Processes 281

Part

Tool

Labor

«conversion process»

«conversion process»

Assembled Product

Final Product

Fig. 180. Value chain model for the chain of conversion processes

«conversion process» Quality Inspection

«conversion process» Assembly

«resource»
Assembled

Product

«resource»
Part

«consume»

«decrement»
Material Issue

«increment»
Inspection

«resource»
Final

Product

«produce»

«decrement»
Labor

Consumption

«resource»
Tool

«resource»
Labor

«consume»

«decrement»
Material Issue

«increment»
Assembly

«decrement»
Tools Usage

«use»

«produce»

«conversion
duality»

«conversion
duality»

«group»
Quality Group

«grouping»
«consume»

Fig. 181. The REA application model for the chain of conversion processes

The REA application model is illustrated in Fig. 181. For simplicity, we
assume that the assembly process does not consume labor; it is fully auto-
mated. The quality inspection process encompasses all necessary quality
inspection activities; for simplicity we assume that this process only con-
sumes labor. The result of the quality inspection is the classification of the
product into a quality group, such as first quality, second quality, and
waste. We can consider this classification as a feature of the product that is
changed by the quality inspection process.

The economic agents are the same as in Fig. 178 and are omitted in
Fig. 181.

282 8 Elementary Conversion Processes

The model in Fig. 181 has the following features:

There is an explicit dependency between processes, which implies the
time order of the processes. The model implies that the product must be
first assembled and then inspected.
The assembled product and the inspected product are different entities.
They might have different type, description, serial number, and set of
features.
The assembled product and the inspected product can be related each to
a different process. For example, the model above specifies that the as-
sembled product can be inspected while the final product cannot be in-
spected (it is not consumed by the inspection process). Similarly, by re-
lating the final product to the sales economic event, we specify that the
final product can be sold, while the assembled product cannot be sold.

In reality, the inspection process changes only one intangible feature of
the product, its classification, into a quality group. Therefore, it might look
inappropriate that in the model in Fig. 181 the inspection process con-
sumes (i.e., destroys) the assembled product and creates a new final prod-
uct. This is a rather philosophical statement, and not a strict rule about how
much the features of a thing must change in order for it to be considered a
different thing after the change. Specifically, for modeling the quality in-
spection, we might consider the MODIFYING A RESOURCE model, de-
scribed in the following chapter, more intuitive.

8.3 Modifying a Product 283

8.3 Modifying a Product

Many conversion processes change only some features of an existing eco-
nomic resource. Examples are maintenance, transport, and quality inspec-
tion processes.

If the conversion changes an economic resource that has been created by
another process or received by an exchange process, there are two different
approaches to describe the conversion process, depending on how much
the resource has changed.

Some experts in the REA modeling framework argue that by changing
any feature of an economic resource the process consumes the old resource
and creates a new one. For example, by the visual inspection of the quality
of a product, the quality inspection process consumes the old product and
produces a new one, because it sets the quality group of the resource. If we
would like to follow this approach, we should use the model described in
the CHAIN OF CONVERSION PROCESSES chapter.

In this book, we will follow a more pragmatic approach by allowing the
same instance of the resource to be both at the input and at the output of
the conversion process.

Problem

How do we make an REA application model for a conversion process that
changes only some features of the existing product?

Solution

Obviously, there must be an economic event related to the resource by the
produce relationship, because the process increases the resource value.
However, it is important to realize that the conversion process that modi-
fies the economic resource also uses it.

284 8 Elementary Conversion Processes

We will use the same example as in the previous chapter, but this time
we will model the assembled product and the final product as the same en-
tity. The value chain model is in Fig. 182.

Fig. 182. Value chain model for modifying a resource

Fig. 183. The REA application model for modifying a resource

The REA application model for modifying a product is shown in
Fig. 183. The model contains an economic resource, Product, created by
the increment economic event Assembly. The Product is used by the dec-
rement economic event Issue for Inspection in the Inspection process, and
the increment economic event Inspection modifies features of the product.
The decrement economic event Issue for Inspection expresses the fact that,

8.3 Modifying a Product 285

during this event, Product might not be available for purposes other than
Quality Inspection.

Current state of the product, i.e. whether the product is currently assem-
bled or inspected can be determined by examining whether the instances of
the relationships to the economic events Assembly and Inspection exist.

The same structure can be used to model transport, maintenance, and
other processes that change some feature of the product, but not its exis-
tence.

The model in Fig. 183 has the following features:

In general, there is no explicit dependency between business processes,
and the model therefore does not imply the time order of the processes
at runtime. We can see that the assembly process must be performed
first, because it creates a product. We know it creates a product because
it does not contain any decrement event that uses the product. However,
if there were several processes modifying a product, such as transport
and storage, in addition to inspection, the processes modifying a product
(quality inspection, storage, and transport) could happen in any order,
and also in parallel.
The process that modifies the product may occur an arbitrary number of
times. For example, the model allows for a product that has already been
inspected to be inspected again.
The product is the same entity through the whole chain of processes. For
example, it has the same type and description, the same identity; it has
the same set of features, though production economic events change
their values.
There is no entity for an intermediate product, but an intermediate
product can be identified. An assembled product is just a state in the
lifecycle of the final product, and can at runtime be identified by exam-
ining the produce relationships: the actual products linked to an assem-
bly economic event have been assembled; the actual products linked to
an inspection economic event have been inspected.

The decision whether to use the model for the CHAIN OF
CONVERSION PROCESSES, or for MODIFYING A RESOURCE, depends
on whether the modifying process changes the implementation type of the
economic resource.

For example, if instead of quality inspection we had business processes
for storage or transport, we would probably consider the resource before
the processes the same type and identity as after them. Some features of

286 8 Elementary Conversion Processes

these products will change during transport and storage (at least their cost
attribute will increase), but the set of features will remain the same.

On the other hand, in the process of reconstruction of a building, we
might consider the building before and after the reconstruction as having
different set of features. Therefore, we might consider the reconstruction
as consuming the old building and creating a new one. In this case, the
CHAIN OF CONVERSION PROCESSES model would be more appropri-
ate than the MODIFYING A RESOURCE model.

8.4 Creating and Consuming Services 287

8.4 Creating and Consuming Services

Sometimes, modeling the economic resources that are used or consumed in
order to increment the value of other resources is not possible or desirable.
Instead, we can encapsulate these economic resources in a new economic
resource called service. The service resource is created by using or con-
suming some economic resources, and the service resource is consumed to
increment the value of other resources.

The creation of services can be modeled in a similar way as the creation
of products, the difference is that an enterprise cannot create a service,
store it, and consume it later. Services are economic resources that are cre-
ated at the same time as they are consumed. This difference has no influ-
ence on the REA modeling principles.

Services as transient resources add a level of indirection between busi-
ness processes, but do not change the operational semantics of the chain of
conversion processes. This is useful, for example, if the business process is
outsourced, and its result – service – is purchased or sold to other eco-
nomic agent.

In the following example, we will illustrate this modeling pattern on the
inspection process. The Quality Inspection process will consume the eco-
nomic resource Inspection Service, instead of Labor. Inspection Service is
produced by business process Inspection Service Creation; see Fig. 184.

An REA application model is shown in Fig. 185. The business process
Inspection Service contains the increment economic event Inspection Ser-
vice Creation, which is paired through conversion duality with the decre-
ment economic event Labor Consumption. The Quality Inspection process
consumes the Inspection Service, and the result, as in previous cases, is the
classification of the Product into a Quality Group.

288 8 Elementary Conversion Processes

Part

Tool

Labor

«conversion process»
Assembly

«conversion process»
Quality Inspection

Product

«conversion process»
Inspection Service

Creation

Inspection Service

Fig. 184. Value chain for creating and consuming services

Fig. 185. The REA model for creating and consuming services

8.4 Creating and Consuming Services 289

The REA model with services has the following features:

Service is a transient resource. It is produced at the same time as it is
consumed; a company cannot store it. If the service is not exchanged
(purchased or sold) with another economic agent, the model can be sim-
plified by omitting the service resource and the production and con-
sumption of the service. For example, in Fig. 185 we can pair the dec-
rement event Labor Consumption through a conversion duality with the
increment event Inspection, and omit the events Inspection Service
Creation, the Inspection Service Consumption and the resource Inspec-
tion Service.
Service is an economic resource; therefore, it can also be related
through an inflow and outflow with other events. For example, a com-
pany can produce an inspection service and also purchase some of it
from a subcontractor.
The model is especially useful if some or all the service is obtained by
an exchange process.

9 Value Chains with Exchange and Conversion
Processes

This section illustrates REA models at the operational level that contain
both exchange and conversion processes.

The SALE AND SHIPMENT chapter illustrates how the sale and ship-
ment processes are related. The chapters PEOPLE MANAGEMENT, and
EDUCATION illustrate that the REA modeling framework can track the
use and consumption of resources that are considered overhead in most
business applications. We will also illustrate how the REA models for
TAXES, WASTE, PURCHASING AND SELLING SERVICES, and
TRANSIENT RESOURCES look.

292 9 Value Chains with Exchange and Conversion Processes

9.1 Sale and Shipment

The Sale event means transfer of ownership of a product from the enter-
prise to the customer. The moment of the transfer of ownership must be
agreed upon between the economic agents.

Shipment is a conversion process that changes one of the features of the
product – its location. The location at which the product changes owner-
ship must be agreed upon between the economic agents. For example, it
might be agreed that the product changes ownership when it is delivered to
the customer, or when it is accepted by the courier service. It might also be
agreed that the product changes ownership when it is picked by the cus-
tomer at the vendor’s premises. For the payment it is usually assumed that
money changes ownership when it arrives in the recipient’s bank account,
or when a check is deposited, but other agreements are also possible.

If the event of the sale is determined by its location of the product being
sold, the business application must have some information about the loca-
tion (the LOCATION PATTERN must be configured on the product), or the
users of the business application must themselves determine whether the
sale has occurred.

Fig. 186. Value chain model for the sales process with shipment

The model in Fig. 187 shows the exchange Sales Process, and the con-
version Shipment Process. The output of the shipment process is Product;
this process changes one of its features – its location. The Shipment proc-

9.1 Sale and Shipment 293

ess has two inputs, Shipment Service, which is an economic resource that
the enterprise purchases from a Courier (the purchase is not modeled in
Fig. 187), and Product, which is used during shipment. The Product Use
decrement event indicates that the value of the product is for the enterprise
decreased during the shipment process. Indeed, the product, during ship-
ment, cannot usually be used, its amount can become smaller, and it can
get damaged. As shipment is a value-adding process, the enterprise expects
that the increase in the product value by changing its location is higher
than its decrease.

The model in Fig. 187 is not complete in the sense that it does not show
how the enterprise uses Cash, acquires Shipment Service (usually by an
exchange purchase process), and obtains Product (either by producing it in
a conversion process or buying it in an exchange process).

Fig. 187. The REA model for the sales process with shipment

294 9 Value Chains with Exchange and Conversion Processes

9.2 Resources Consumed During the Sales Process

Products usually do not sell themselves. Many companies have designated
personnel, such salesmen, who are responsible for sales, and make the
sales events occur. In many cases users of business applications would like
to track the salesmen’s labor and relate it to the sales events.

In addition to salesmen’s labor, selling products consumes other re-
sources of the enterprise, such as the area where the products are on dis-
play, and others. We omit these additional resources from the model for
simplicity, and formulate the problem as follows.

Problem

How is the labor of the salesmen related to the sales economic events?

Solution

To solve this problem, we must realize that selling a product encompasses
exchange and conversion. The sales process is an exchange process be-
tween enterprise and customer. Parallel to this exchange process is a con-
version process that consumes salesmen’s labor and other resources in or-
der to make the sales events happen. For clarity, we also add the labor
acquisition process explaining how the enterprise gets rights to use the
salesmen’s labor. The value chain model is illustrated in Fig. 188. The
REA model for these three processes is illustrated in Fig. 189.

9.2 Resources Consumed During the Sales Process 295

Fig. 188. Value chain model for sales process with salesmen labor

The key point to understanding the model in Fig. 189 is to realize that
the enterprise acquires Labor from Salesman by the Labor Acquisition
event, and consumes this Labor to sell the Product. These three entities are
shown in bold in Fig. 189.

The conversion Sales Process consumes salesmen’s Labor, and changes
a feature of the product to “Is Sold”; this is equivalent to creating an in-
stance of the outflow relationship between the Product and the Sale event.

This model enables tracking labor of all human resources that are con-
sumed in the sales process for each individual sale. For example, we can
extend the model by including the labor of warehouse personnel, cashiers,
etc., and other resources, such as their expenses, during the sales process.

The product is used during the Sales Process by the decrement event
Product Use. This event represents, for example, the time the Product is
on display on a shelf in a supermarket, or some other event that increases
the cost of the product in its relation to Sale.

296 9 Value Chains with Exchange and Conversion Processes

Fig. 189. The REA model for the sales process with salesmen labor

9.3 People Management 297

9.3 People Management

Unless the enterprise is a one person company, the labor of economic
agents that work for the enterprise must be coordinated. Companies use
designated resources, managers, to be responsible for and to coordinate la-
bor of subordinates. The labor of employees who are not managers is con-
sumed to increase the value of a product. What is managers’ labor used
for?

Problem

What does the enterprise receive in return for its consumption of work of
managers?

Solution

The enterprise receives more efficient labor from the manager subordi-
nates. Manager labor is consumed in order to increase value of subordinate
labor. Simply, the enterprise perceives the managed labor as having higher
value than non-managed labor. The value chain model is illustrated in
Fig. 190. The value chain consists of two processes: the labor acquisition
process, in which the enterprise acquires both managing and managed la-
bor, and the people management process, in which the enterprise consumes
managing labor in order to increase the value of managed labor.

298 9 Value Chains with Exchange and Conversion Processes

«conversion process»
People Management

«exchange process»
Labor AcquisitionCash

Labor

Fig. 190. Value chain for people management

The REA model for people management is illustrated in Fig. 191. In the
Labor Acquisition process the enterprise acquires Labor in exchange for
Cash. In the People Management process the enterprise consumes the
managing Labor during economic event Consume Labor, and the dual
economic event People Management increases the value of managed La-
bor.

Fig. 191. The REA model for people management

9.3 People Management 299

What if the users of a business application would like to impose the
business rule that only the labor of managers can be used to manage labor?
This can be achieved in two ways:

Application designers can create a new economic resource, Manager
Labor, and relate it to the Consume Labor economic event. This solu-
tion has the disadvantage that any change in this policy would require
change in the application design.
Application designers can create a new labor type, for example, Man-
ager Labor, and create a policy that specifies that only the labor of
Manager Labor type is allowed to be consumed by the Consume Labor
event. This solution is more flexible, as the users of business applica-
tions can themselves change this policy, and also decide what to do if
the policy is violated.

300 9 Value Chains with Exchange and Conversion Processes

9.4 Education

Many companies provide education to employees. The education process
creates costs for the enterprise. When creating an REA model for the edu-
cation process, an application designer must answer the following ques-
tion.

Problem

What does the enterprise receive in return for providing education to em-
ployees?

Solution

Through the education process, the enterprise hopes that it will receive
more efficient labor from its employees. Education is a resource consumed
in order to increase the value of Labor. The value chain model is illus-
trated in Fig. 192. The value chain consists of two processes: the Educa-
tion Acquisition process and the Learning process, in which the enterprise
uses the Education resource in order to increase the value of Labor.

9.4 Education 301

«conversion process»
Learning

«exchange process»
Education

Acquisition

Labor

«exchange process»
Employment

Education

Cash

Fig. 192. Value chain for education

The REA model for education is illustrated in Fig. 193. This model is
from the perspective of a person receiving the education, for example, an
employee. Therefore, the agent Employee plays the role of the enterprise.
First, the Employee receives the Education in the Education Acquisition
process. This is an exchange process; note that in this example we make
the Employer pay for the education. Education is an economic resource
that the Employee uses to increase value of his Labor. The Employee also
uses his Labor to improve it, both by using his time for learning, and in
“on the job training”. In the Employment process, the employee sells his
labor to the Employer for Cash.

The economic resource Education is a permanent (not transient) re-
source; it is difficult or nearly impossible to erase the knowledge an em-
ployee receives from education. Therefore, the Education resource is used
and not consumed during the Learning Process.

302 9 Value Chains with Exchange and Conversion Processes

Fig. 193. The REA model for education (from the employee perspective)

9.5 Taxes 303

9.5 Taxes

We will illustrate the REA model for taxes on the example for value-added
tax (VAT); a similar model can be applied also for other fees to the gov-
ernment. Paying taxes is the outflow of an economic resource, cash. This
outflow must be related to some inflow economic event according to the
REA domain rules. The usual problem in creating an application REA
model for taxes is formulated below.

Problem

What does an economic agent receive in return for paying taxes?

Solution

Although it might not be obvious at first, the enterprise often receives cer-
tain services from the government in return for paying taxes. Public roads,
a legal system, and public security are examples of the benefits that the
government provides to the enterprise from collected taxes. We can also
consider the government as one of the vendors of the enterprise.

The value chain model for tax payment is illustrated in Fig. 194. The tax
payment process is an exchange of cash for government services. The gov-
ernment services are then consumed in some value-adding process whose
result is the sales process.

The model in Figs. 194 and 195 represents the theoretical REA model
that explains tax. We will simplify the model in Fig. 196, and give an ex-
ample of a model for VAT. VAT is used in European countries, and is
equivalent to the sales tax used in the US.

Is tax payment a value-adding process? As paying taxes is often not a
question of voluntary choice, the reason the enterprise pays taxes can be

304 9 Value Chains with Exchange and Conversion Processes

explained by fact that in doing so it avoids a potential penalty, rather than
by the fact that it perceives the value of the received services as higher
than the value of the cash paid.

Fig. 194. Value chain model for taxes

The REA model illustrating the theoretical solution explaining tax is in
Fig. 195. Government Services is an economic resource, consumed in
Some Value-Adding Process, a process adding value to Product, which is
then sold to customers in the Sales process.

The first problem with the theoretical solution in Fig. 195 is that we
cannot in practice determine which services from the government the en-
terprise uses, and the specific amount of these services.

However, we know the exact price for these services. The price is tax.
Therefore, the economic resource Government Services has an attribute
Owed Tax, which is the price of the Government Services acquired. Gov-
ernments specify in their legislation a procedure to determine its value; this
legislation can be considered as a contract between the Government and
the Enterprise. For example, in Denmark this price is calculated as 25% of
the added value.

The second problem in the solution in Fig. 195 is that we do not know
how the enterprise consumes the Government Services and at what time.
Therefore, we simplify the model by omitting the conversion process, and
make an assumption that Government Services are reflected directly in the
price of the sold products, see Fig. 196. This is the same assumption as that
in the legal system of most countries.

9.5 Taxes 305

Fig. 195. Theoretical REA model explaining what tax is

 In the model in Fig. 196, the Sales Process contains two decrement
economic events, Sale and Government Services. Both events usually ap-
pear on the materialized claim, such as a receipt from a shop or an invoice,
which often specifies the price of the product and the tax. If the Sales
Process occurs before the Tax Payment process, the value of the resource
Government Services, i.e. the property Owed Tax is negative.

306 9 Value Chains with Exchange and Conversion Processes

Fig. 196. A simplified model for tax, with use of government services omitted

VAT is usually determined from the difference between purchases and
sales. An assumption in calculating the price of government services is that
sales increase the price of government services, and purchases of products
that contain VAT decrease the price of government services. This model
is illustrated in Fig. 197.

9.5 Taxes 307

Fig. 197. The REA model for tax with purchase and sales

308 9 Value Chains with Exchange and Conversion Processes

How to determine the price for government services depends on national
legislation. For example in Denmark, VAT is calculated as a percentage of
the invoiced amount of specified products. In Germany and Sweden, VAT
is calculated as a percentage of the cash received. In the US, sales tax is
calculated as a percentage value of sale. Fig. 198 shows the sales process
where these rules are illustrated by dashed lines. A VALUE PATTERN can
be used to represent the tax amount.

Fig. 198. VALUE PATTERN can be used to represent tax amount

Fig. 199 illustrates in more detail the Tax Payment process. The enter-
prise usually pays VAT periodically, typically several times a year. At the

9.5 Taxes 309

end of each period, the enterprise determines the cost of government ser-
vices received. It does so by creating an instance of the economic event
Receipt of Government Services with a value that corresponds to the value
of the Government Services resource. This economic event creates a claim
between the Government and the enterprise. The enterprise often material-
izes this claim by creating a document called VAT Settlement. In this
document, the enterprise indicates the amount of Received Government
Services in a given period. As the materialized claim is essentially a report,
it usually also indicates other information that the tax authorities require,
such as the amount of sales, and purchases, and the percentage of sales
VAT and purchase VAT. The company pays the amount due to the tax au-
thorities; this Tax Payment settles the claim.

It can happen that the amount of taxes from purchase processes events is
higher than the amount of taxes from sales processes. In this case, the eco-
nomic event Receipt of Government Services has negative value, and the
enterprise receives Cash from the government.

Fig. 199. Payment of VAT to tax authorities

In many countries, the amount of tax depends on several factors, for ex-
ample, on whether a customer is domestic or international, and there can
be different percentages of tax for different groups of products. The
POLICY PATTERN can be used to determine the tax value.

310 9 Value Chains with Exchange and Conversion Processes

9.6 Marketing and Advertising

The purpose of marketing is to increase product awareness. Marketing
consists of many activities, including advertising; we will use advertising
as an example, that can easily be applied to other marketing activities. For
example, a company can place its advertisements on billboards, and pay
the advertising agency for the rented billboards. We will create an REA
model for an enterprise that buys advertising services.

Problem

To create a complete REA model, we need to answer the following ques-
tion: What does the enterprise receive in return for the advertisements?

Solution

The motivation for advertisements is more sales of the products of the en-
terprise, although advertisements are often targeted to product types, rather
than to actual product instances. Advertising increases the cost of the
products; but the enterprise expects that it increases their value for the cus-
tomers, and, consequently, leads to more sales. Advertising creates an eco-
nomic resource, Product Awareness, which can be used to change one of a
product’s characteristics, namely, whether the product is commercially
known.

The solution consists of three business processes, the Advertisement Ac-
quisition exchange process, in which the enterprise acquires an Advertising
Service from the agency, the Advertisement Service Consumption conver-
sion process, in which the enterprise transforms the Advertising Service
into a Product Awareness, which is used to Make Product Known. The
known product is then sold in the Sales process.

9.6 Marketing and Advertising 311

Fig. 200. Value chain model for advertising

During the Advertisement Acquisition process, the enterprise acquires
the Advertising Service and gives Cash to the advertising company in re-
turn. In our example, the Advertising Service is the right to use the bill-
board for a period of time. It could be a column in a newspaper or a slot on
TV. The contract with the agency specifies the details about this exchange,
such as the advertising media and the payment terms. After the Advertise-
ment Acquisition process, the Advertising Service resource is under the
control of the enterprise.

During the Advertisement Service Consumption process, the enterprise
consumes the Advertising Service. This event occurs during the time pe-
riod in which the enterprise had rights to use the billboard, the commercial
slot on TV, or in the moment of publishing the column in the newspaper.
This event is paired through a conversion duality with the economic event
Create Awareness, which occurs during the time period in which potential
customers see the advertisement. The awareness is often related to a prod-
uct type; the enterprise owns an intangible economic resource Product
Type Awareness. In the conversion process Making Product Attractive the
enterprise uses the Product Type Awareness to increase the value of the
actual Product. The actual Product is then sold in the Sales process. The
solution is illustrated in Fig. 201.

312 9 Value Chains with Exchange and Conversion Processes

«exchange process» Advertising Service Acquisition

«conversion process» Advertising Service Consumption

«exchange process» Sales

«conversion process» Making Product Known «use»

«decrement»
Sale

«increment»
Cash Receipt

«exchange
duality»

«inflow»

«resource»
Advertising

Service

«increment»
Advertising

Service
Acquisition

«decrement»
Cash

Disbursement

«inflow» «exchange
duality»

«resource»
Cash

«outflow»

«decrement»
Advertising

Service
Consumption

«increment»
Create

Awareness

«consume»
«conversion

duality»

«resource»
Product Type
Awareness

«produce»

Enterprise has the rights to use billboard for
a period of time, or the spot in the news.

The advertisement is
published.

«outflow»

«decrement»
Use Awareness

«increment»
Make Product

Known
«resource»

Product

«use»

«produce»

«decrement»
Use Product

«conversion
duality»

Obtaining Product
is not modeled

Fig. 201. The REA model for advertising

9.7 Waste 313

9.7 Waste

The use of economic resources means that the resources decrease their
value, but still exist after decrement event. After some time the resources
can be used up so much that further use is impossible. For example, dis-
charged batteries cannot be used for their original purpose. Such resources
can be considered as waste. However, when constructing the REA applica-
tion model, the application designer must answer the following question.

Problem

What does the enterprise receive in return for disposed waste?

Solution

The disposal of waste must be a value-adding process; otherwise, a ra-
tional enterprise would not perform it. The disposal of waste consumes an
enterprise’s resources. For example, for the disposal of dangerous waste,
an enterprise usually pays a recycling company. Therefore, the disposal
event must be an increment economic event. As the disposal process is a
value-adding process, the value of waste must be negative at the disposal.

314 9 Value Chains with Exchange and Conversion Processes

«conversion process»
Production

«exchange process»
Purchase

Product

«exchange process»
Disposal

Tool Cash

Arrow determines the
added value. Tool
physically goes the
opposite way.

Fig. 202. Value chain for tool lifecycle including item disposal

Fig. 202 illustrates a value chain model of the lifecycle of an economic
resource Tool, including tool disposal. The model contains three processes,
Purchase, Production (in which the Tool is used), and Disposal (in which
the Tool is disposed). The Disposal process is a value-adding process,
which increases value of the Tool from some negative value to zero, by
giving it to the Recycling Company. The corresponding REA application
model is shown in Fig. 203.

For the entrepreneurial goals of the enterprise, the value of the Tool re-
source is negative at the time of disposal, and higher in absolute value than
the value of Cash given to the Recycling Company in return. The Disposal
event increases the value of the Tool from a negative value to zero. There-
fore, Disposal is an increment event. It is paired through an exchange dual-
ity to the Cash Disbursement event, because the enterprise pays the Recy-
cling Company for receiving rights and responsibility of the Tool.

9.7 Waste 315

Fig. 203. The REA model for tool lifecycle including disposal

316 9 Value Chains with Exchange and Conversion Processes

9.8 Purchasing and Selling Services

Companies do not often perform all business processes using or consum-
ing their own resources; but some business processes are purchased from
subcontractors. In the REA framework, the economic agents cannot buy or
sell business processes, but only economic resources.

Problem

How do we model outsourced business processes?

Solution

If an economic agent performs a business process for another economic
agent, the economic agents exchange a service. A service is an economic
resource resulting from a business process performed by an economic
agent for another economic agent. Services are transient resources that are
consumed at the same time as they are created.

As an example, we will illustrate a model in which the enterprise pur-
chases the inspection service from a vendor. The value chain model is
shown in Fig. 204.

9.8 Purchasing and Selling Services 317

Part

Tool

Cash

«conversion process»
Assembly

«conversion process»
Quality Inspection

Product

«exchange process»
Inspection Service

Purchase

Inspection Service

Fig. 204. Inspection service exchange

Fig. 205 illustrates the model from the perspective of the provider of the
quality inspection service, and Fig. 206 illustrates it from the perspective
of the recipient of quality inspection service.

«exchange process» Inspection Service Sale

«conversion process» Produce Inspection Service

«decrement»
Quality

Inspection«outflow»

«increment»
Cash Receipt

«resource»
Cash

«inflow»
«exchange

duality»

«increment»
Inspection

Service Creation

«resource»
Inspection

Service

«produce»
«decrement»

Labor
Consumption

«resource»
Labor

«consume»
«conversion

duality»

Fig. 205. The REA model for outsourced inspection, inspection provider view

318 9 Value Chains with Exchange and Conversion Processes

Fig. 206. The REA model for outsourced inspection; inspection recipient view

In Fig. 206, the economic resource Inspection Service is purchased from
a Vendor in exchange for Cash. The Inspection Service is consumed by the
decrement event Inspection Service Consumption, which is paired through
a conversion duality with the increment event Inspection.

9.9 Transient Resources 319

9.9 Transient Resources

Some resources are consumed at the same time they are created. They can-
not be stored, and the enterprise cannot put them on stock because of their
physical nature. Electricity is an example of a transient resource that we
came across earlier. Other examples are services the enterprise receives or
provides. The fact that a resource is transient does not change any of the
REA modeling principles.

Electricity

An enterprise receives electricity from an electricity distributor. The enter-
prise consumes electricity for heating buildings, running machines, sup-
porting its infrastructure, and many other things. Suppose for simplicity
that the enterprise consumes electricity only for heating. The model can
easily be extended to cover other uses of electricity.

For clarity, we will make a model from two perspectives, that of an
electricity provider and of an electricity consumer. A simplified model for
an electricity provider is illustrated in Figs. 207 and 208.

Fig. 207. Business processes for an electricity provider

320 9 Value Chains with Exchange and Conversion Processes

Fig. 208. The REA model for an electricity provider

Models for an electricity consumer are illustrated in Figs 209 and 210.
The electricity consumer purchases electricity, i.e., the consumer ex-
changes Cash for Electricity. The consumer produces heating by using Ra-
diator and by consuming Electricity.

Fig. 209. Value chain from electricity consumer’s viewpoint

9.9 Transient Resources 321

«exchange process»

«conversion process»

«resource»

«increment» «decrement»

«inflow»

«exchange»

«resource»

«outflow»

«decrement» «increment»
«consume»

«resource»

«produce»

«decrement»«resource» «use»

«resource type»

«specification»

«conversion»

Voltage and
frequency range

Actual voltage and frequency

Fig. 210. The REA model for an electricity consumer

Electricity is a transient resource. The events Electricity Receipt and
Electricity Consumption occur simultaneously, and the resource Electricity
is consumed at the same time it is produced. Heating is also a transient re-
source; the event Consuming Heating is omitted from the model for sim-
plicity.

Electricity Instance and Modeling Compromise

Please note that Electricity in Fig. 210 is a resource instance. While the re-
source type Electricity Type is at runtime characterized by frequency range
of 50 to 60 Hz, voltage from 220 to 230 V, and current from 0 to 20 A at
any given time, the resource instance Electricity is at runtime characterized
by actual values of frequency, voltage, and current. The implementation of
such resource instance requires an array or similar data structures to store
the values in all moments in time relevant for the users of business applica-
tion.

The management of many electricity consumers is not interested in data
stored in the electricity instance resource. Average electricity consumers
are interested only in the total amount of electricity delivered, and this can
be obtained from an account (see the ACCOUNT PATTERN for details) on
Electricity Type. Therefore, a simpler and more convenient model would

322 9 Value Chains with Exchange and Conversion Processes

include a modeling compromise omitting the resource instance electricity
and the connecting economic events Electricity Purchase and Electricity
Consumption by a consume relationship with resource type Electricity
Type. We must be aware that this is a modeling compromise and we lose
some business information in order to obtain a simpler model.

«exchange process»

«conversion process»

«resource type»

«increment» «decrement»
«inflow»

«exchange»

«resource»

«outflow»

«decrement» «increment»

«consume»

«resource»

«produce»

«decrement»«resource» «use»

«conversion»

Common modeling compromise. The
model does not track information about
actual voltage, frequency and current.

Fig. 211. Modeling compromise of the REA model for an electricity consumer

10 Processes with Contracts

In this section, we illustrate examples of REA models at the policy level.
These models determine what should or could happen, as opposed to what
has happened, which is the purpose of the models at the operational level.

The models for PURCHASE ORDER and LABOR ACQUISITION illus-
trate typical contracts that are part of most business applications.
GUARANTEE and INSURANCE are contracts might not look like typical
exchanges of economic resources; therefore, we will illustrate how their
REA models look.

When economic agents sign a contract, they usually expect that both
partners will fulfill their commitments. However, this does not happen al-
ways, and we will illustrate it in the section PENALTY FOR NOT
FULLFILLED COMMITMENTS. PRODUCTION SCHEDULE is similar
to contract, but covers commitments for conversion processes. The REA
model for TRANSPORT illustrates how the contract and schedule are re-
lated.

324 10 Processes with Contracts

10.1 Purchase Order

In business to business and some business to customer scenarios, a cash
sale is rare. Usually, the enterprise places a purchase order for the prod-
ucts, the vendor sells the goods, and the enterprise eventually pays for the
goods. The purchase order is a business document that contains names of
economic agents, a date, a list of the ordered items, and, often, their prices
and other additional information.

Problem

How are the purchase order and its components represented in the REA
model?

Solution

The REA model does not give an answer to this question.8 We will present
one possible mapping of the REA entities to the components of the Pur-
chase Order, though other mappings might exist as well.

The Purchase Order, see Fig. 212, is a contract between economic
agents Vendor and Enterprise. The purchase order lines, Purchase Lines,
are the commitments of the contract. For the enterprise, the Purchase Line
is a commitment to receive economic resource Product, and the Payment
Line is a commitment to pay for it. At runtime, the Purchase Order can
have several Purchase Lines – several products can be specified on one
Purchase Order, and several Payment Lines – the products can be paid for
in several installments or using different payment methods.

8 For many people studying REA, this is key information, helping them under-

stand the purpose and scope of the REA ontology.

10.1 Purchase Order 325

A Purchase Line can be related to a Product Type (in the case the enter-
prise orders a product in a catalogue), but, eventually, by the time of the
Purchase, it must be related to an actual Product. A Payment Line can be
related to a Cash Type, specifying the payment method, but, eventually, by
the time of Payment, it must be related to an actual economic resource
Cash.

Companies often materialize the claim and create an invoice, which is
used to inform the economic agents about the value of the imbalanced du-
ality.

The model in Fig. 212 illustrates the REA model for Purchase Order,
and also the economic events that fulfill the commitments; so the model
contains all REA entities needed to model the expected path of the pur-
chase process. The model in Fig. 212 does not contain invoice, as in a
world where information is passed electronically, this document is not ac-
tually necessary to successfully conduct business; the economic agents
have all the information they need in the contract.

Fig. 212. Purchase with purchase order

Model in Fig. 213 is an instance model showing a Purchase Order,
No. S567, between Vendor C42 and the enterprise. The Purchase Order
has two commitments, the Purchase Line on two Product Types No. I23

326 10 Processes with Contracts

and the price agreed upon for these two products (the Payment Line), $10.
The Payment Line commitment is fulfilled by two economic events, Pur-
chase, each on an actual Product. The Payment Line commitment is ful-
filled by an event Payment of $10.

The purchase order number, the product type number and the product
serial number can be implemented using the IDENTIFICATION
PATTERN. The commitment Purchase Line contains information about
quantities of the resources and their prices. These properties can be im-
plemented using the VALUE PATTERN. The economic event Purchase
does not contain information about the quantities of the products, as at run-
time every Purchase event represents the purchase of one unit of the
Product.

 Fig. 213. An instance model of a purchase order

The model in Fig. 213 is in some sense a minimal model that illustrates
one possible implementation of the REA application model. Users of busi-

10.1 Purchase Order 327

ness applications usually require much more functionality on the REA en-
tities, most of can be implemented using the behavioral patterns illustrated
in Part II of this book. Users usually tolerate many modeling compromises;
for example, many current business applications do not use the Payment
Line, but place its information on the Purchase Order. This compromise
does not allow, for example, for payments in several installments.

328 10 Processes with Contracts

10.2 Labor Acquisition

Labor is one of the resources of an enterprise; in many businesses, such as
in information technology, labor is probably the most important resource.

Problem

How does the enterprise acquire labor?

Solution

The enterprise usually acquires labor in exchange for cash. At the opera-
tional level, the labor acquisition process is similar to the purchase process.
The different forms of labor acquisition, such as employment, consultancy
services, etc., are modeled by different kinds of contracts, but the models
are similar at the operational level.

Fig. 214. Labor acquisition

Labor acquisition with employment contract is illustrated in Fig. 215.
The economic resource Labor is a transient resource (it is consumed at the
same time it is created). The increment event Labor Acquisition specifies
the time interval in which the Enterprise acquires Labor from the Em-
ployee.

10.2 Labor Acquisition 329

The Employment commitment specifies the time interval in which the
Employee agrees to provide his Labor to the Enterprise. If the employment
is for unspecified time, the end of the Employment commitment is also un-
specified. In such a case, the terms of the Employment Contract usually
specify a procedure or condition for the end of the Employment commit-
ment. The Employment commitment reserves Labor Type, which specifies
the kind of Labor the Employee is committed to providing, and often also
qualifies types of tasks. The commitment Salary specifies the amount of
Cash to be paid in exchange for the Labor.

Users of business applications usually decide to materialize the claim
between Labor Acquisition and Salary Payment, and print a report, some-
times called Deposit Notification, with the details of the acquired Labor
and Cash paid, and send it to the Employee with the payment.

Fig. 215. Employment

An employment contract might specify multiple kinds of compensation
for the labor, such as salary and bonus. In these cases, the model will con-
tain several decrement commitments, such as Salary commitment and Bo-
nus commitment; they can be fulfilled by single or multiple salary payment
economic events.

330 10 Processes with Contracts

10.3 Guarantee

The guarantee is a promise by the provider that the economic resource
provided will either perform satisfactorily for a given length of time under
certain conditions, or the recipient will receive a specified compensation,
such as the repair or replacement of the product or the return of cash.

Problem

How do we create an REA application model for guarantee?

Solution

A guarantee is a term of the contract that instantiates an additional com-
mitment under conditions specified in the contract. The value chain model
is illustrated in Fig. 216.

Fig. 216. The sales process that accepts product return

For example, a money-back guarantee is a promise by the seller to ac-
cept the return of the product under certain conditions (such as the product
not having been used), within a limited period of time (for example, 30
days).

10.3 Guarantee 331

Fig. 217. The REA model for the sales process that accepts product return

An REA application model for money-back guarantee is specified in
Fig. 217. If the conditions of the guarantee are met, two commitments are

332 10 Processes with Contracts

instantiated; Product Return and Money Return. The commitments are ful-
filled by economic events Product Return and Money Return. The events
influence the value of the Claim that exists between the economic events
Sale, Cash Receipt, Product Return, and Money Return. If a customer de-
cides to return the product, and the enterprise accepts it and registers the
return, the Claim will be created and the Money Return event will settle the
claim.

10.4 Insurance 333

10.4 Insurance

An insurance contract is a contract between two economic agents, in which
one agent (the insurer) agrees to reimburse another agent (the insured) in
the case of loss or harm of an insured economic resource, such as property
or life, in specified contingencies, such as fire, accident, and death, that
occur under the terms of the contract. The insured agent agrees to provide
a payment proportionate to the risk involved.

 When making an REA model for an insurance contract, application de-
velopers have to answer the following question.

Problem

What does the insured economic agent receive in return for his payment?

Solution

In a sense, the insured economic agent receives security, but this is not the
correct answer. The insured economic agent receives reimbursement in
cash in the cases specified in the terms of the insurance contract. There-
fore, the REA model at the operational level is a simple exchange of cash
for cash; see Fig. 218.

Fig. 218. Insurance

334 10 Processes with Contracts

The insurance contract from the perspective of the insured enterprise, is
illustrated in Fig. 219. The contract contains the Cash Disbursement com-
mitment, specifying the premium the enterprise pays the Insurer. The re-
ciprocal Cash Receipt commitment is not instantiated when the contract is
signed, because the Insurer does not have to pay anything to the insured
enterprise unless there is loss of or harm to the insured resource. These
conditions are specified by the Insurance Policy, a term of the contract,
which can instantiate the Cash Receipt commitment.

Fig. 219. Insurance contract

10.5 Penalty for Violated Commitment 335

10.5 Penalty for Violated Commitment

A sales order contains commitments that represent promises of future eco-
nomic events that both contracting parties promise to fulfill. Contracts
usually also specify terms for what should happen if some of the commit-
ments are not fulfilled as promised. For example, it can be specified that an
economic agent that cannot fulfill a commitment has to pay a specified
penalty to the other economic agent. The promise to pay a penalty is not a
commitment when the contract is signed; it may become a commitment
under the conditions specified by the terms of the contract.

The payment of the penalty is an outflow of resources. To make a full
REA model that includes penalties for violated commitments, an applica-
tion designer must answer the following question

Problem

According to the REA rules, every resource outflow must be paired
through an exchange duality with some inflow. What does an economic
agent receive in return for a paid penalty?

Solution

The short answer is nothing, for the penalty as such, because a commit-
ment to pay a penalty for a violated commitment makes sense only when
considering the original commitment that has been violated. However, a
penalty reduces the value of the claim of the original exchange.

Fig. 220. Sale with possible penalty payment

336 10 Processes with Contracts

Fig. 221. Contract with penalty for failure to sell

An REA model for a Sales Order with a penalty for failure to sell is il-
lustrated in Fig. 221. The contract term Failure to Sell specifies that the
Enterprise pays Cash as a penalty in the case where it fails to deliver (and

10.5 Penalty for Violated Commitment 337

consequently to sell) products in a specified time. If the condition in a con-
tract term becomes true, the Penalty Payment decrement commitment is
created, which can be fulfilled by the decrement event Penalty Payment.
The consequence of this economic event is that the difference in the Claim
between Sale and Cash Receipt is reduced by the value of the Penalty, so
this Claim can be settled by a Cash Receipt of less value; the original value
of the Claim is decreased by the value of the Penalty.

Note that, at runtime, the decrement commitment Penalty Payment is in-
stantiated by the Sales Order contract only if the conditions specified in
the Failure to Sell term are met. The Penalty Payment commitment is not
instantiated when the Sales Order is registered. An analogous model can
be made for a penalty for late payment.

The economic resource transferred as a penalty can be different from
Cash; it can, for example, be a product or a service.

338 10 Processes with Contracts

10.6 Schedule

Creating a product is seldom a spontaneous thing. Companies usually plan
and schedule the usage and consumption of their resources. The aim is to
optimize the usage and to fulfill the exchange commitments to other eco-
nomic agents.

Problem

How do we create an REA application model for a production schedule?

Solution

A production schedule consists of commitments to use, consume, and pro-
duce economic resources. A value chain model for the product creation
process is illustrated in Fig. 222, and an REA application model for a pro-
duction schedule is illustrated in Fig. 223.

Fig. 222. Value chain model for creating a new product

 In Fig. 223, the Production Schedule consists of four commitments;
Material Requisition, Tools Requisition, and Labor Requisition are the
decrement commitments paired through a conversion reciprocity with the
increment commitment Production Order.

10.6 Schedule 339

Fig. 223. The REA model for a production schedule and a production run

The Material Requisition commitment is a promise by a Warehouse
Clerk to make a specified amount of Part Types available to the Worker.

340 10 Processes with Contracts

The Tools Requisition commitment is a promise by the Warehouse Clerk
that tools of a specified Tool Type will be available to the Worker, and a
promise of by the Worker to deliver the tools back. The Labor Requisition
commitment is a promise by the Worker to the Supervisor to consume
worker’s Labor in a specified time. The Production Order commitment is
a promise by the Worker to the Supervisor to produce an instance of Prod-
uct Type.

For simplicity, we have not illustrated in the model that Labor is a
specification of Labor Type, Tool is a specification of Tool Type and Part
is a specification of Part Type. At runtime, when the production schedule
is created, there usually are reservation relationships between the commit-
ments and the resource types (Part Type, Tool Type, Labor Type, and
Product Type), but eventually these commitments must also be related by
reservation relationships to the resources (Part, Tool, and Labor).

The commitments are fulfilled by economic events that record the actual
conversion process; for example, Material Requisition is fulfilled by Mate-
rial Issue, Labor Requisition is fulfilled by Labor Consumption, and Pro-
duction Order is fulfilled by Production Run.

10.7 Transport 341

10.7 Transport

The following example illustrates an REA application model of a company
transporting its employee on a business trip. The employee is represented
as labor; the transport changes value of the labor for the enterprise, which
believes that the employee’s labor will be more worth at his destination lo-
cation than at his original location. The transport is a service purchased
from a transportation provider. The enterprise consumes the transportation
service (in this example manifested as a seat on an airplane) in order to
move labor from one location to another. The value chain model for this
example is illustrated in Fig. 224.

Fig. 224. Value chain model for transport

The solution consists of two processes. During the Transport Purchase
process, the enterprise receives the economic resource Seat in exchange
for Cash. In the Transport process, the enterprise consumes the resource
Seat to modify the value of Labor. The basic idea is that the employee’s
labor at the destination location has more value for the enterprise than at
his location of origin.

The REA model is illustrated in Fig. 225. The resource Seat represents
an actual place in the transport vehicle. The resource Seat Type specifies
some features of the seat, such as business or economy class, and window
or aisle. Please note that the specification of class, a window or aisle can

342 10 Processes with Contracts

be modeled as a Seat Type attribute, or as a relationship to the Seat Cate-
gory group.

Sometimes, a Seat Reservation is for an actual seat in the transport vehi-
cle. In this case, the reservation relationship to Seat Type is omitted and the
reservation relationship is directed to the actual Seat instead of to Seat
Type.

The exchange process Seat Transport is governed by a Transport Con-
tract, consisting of clauses Seat Reservation and Cash Disbursement. The
commitment Seat Reservation specifies when the reservation took place
and the reservation terms (such as in what time interval the place can be
occupied). The commitment Cash Disbursement specifies the price for the
Seat Type, and, usually, also when the payment should occur. The eco-
nomic event Rights to the Seat specifies when, i.e., in what time period, an
actual seat has been sold.

The conversion process Transport is governed by Transport Schedule,
consisting of the clauses Seat Occupation and Move commitments. The
commitment Seat Occupation specifies when the employee is supposed to
use the Seat. Seat Occupation is a decrement commitment because during
transport Labor usage of Labor for its original purpose might be limited.
The economic event Seat Occupation might be different from Seat Reser-
vation; for example, there can be scheduled a one-way trip, but a reserved
return ticket, because the return flight is cheaper. The Move commitment
represents when the actual move of Labor takes place, as well as the loca-
tions of origin and destination. The Move is an increment commitment,
because, at the end of Move, Labor has more value to the enterprise than at
the beginning of Move.

10.7 Transport 343

«fullfillment»

«conversion process»

«resource» «increment»
«decrement»

«exchange
duality»

«resource»

«outflow»

«decrement» «increment»
«conversion

duality»

«resource»

«produce»

«increment
commitment»

«decrement
commitment»

«exchange
reciprocity»

«resource
type»

«reservation»

«specification»
«fullfillment»

«decrement
commitment»

«increment
commitment»

«conversion
reciprocity» «reservation»

«reservation»

«fullfillment» «fullfillment»

«inflow»

«consume»

«exchange process»

«consume»

«reservation»

«reservation»

«reservation»

«reservation»

«contract»

«clause» «clause»

«schedule»«clause» «clause»

«fullfillment»

Fig. 225. The REA model for transport

Appendices

A. REA Ontology

 “An ontology is a study of the categories of things that exist or may exist
in some domain” (Sowa 1999). Ontological categories define the concepts
that exist in the domain, as well as relationships between these concepts.
Geerts and McCarthy (Geerts, McCarthy 2000, 2002) formulated REA as
an ontology for business systems. The REA ontological categories are il-
lustrated in Fig. 226.

stockflow participation

duality

fulfillment

reservation
reciprocity

involvement

typification typification typification

reservation

characterizationcharacterization

responsibility
linkage

custody

characterization

Fig. 226. REA ontology

The purpose of this appendix is to outline the difference between the
model illustrated in Fig. 226 and the model we described in Part I of this

348 A. REA Ontology

book. We described in this book exchanges and conversions as separate
patterns, because the semantics of the modeling elements in exchanges and
conversions are different, although the models are structurally similar and
can be mapped to common concepts. Only the economic resource and pol-
icy have the same semantics both in exchange and conversion, because
economic resources link the exchange and conversion processes, and a
single policy may be applied to some entities in an exchange process and
some entities in a conversion process.

The ontological categories not described in this book are stockflow, par-
ticipation, and characterization. Stockflow is a common concept for the in-
flow, outflow, use, consume and produce relationships. Duality is a com-
mon concept for the exchange duality and conversion duality.
Participation is a common concept for the provide and receive relation-
ships. Characterization is a common concept for the linkage type, respon-
sibility between agent groups and the custody between resource and agent
groups.

REA does not have explicit names for the relationship linking REA enti-
ties to a Contract or Schedule; and linking REA entities to a Policy. The
reasons are beyond the scope of this book: Contract, Schedule and Policy
are mediating entities, also called “thirdness” in (Sowa 1999); therefore,
these relationships are not standalone ontological categories. Table 3 out-
lines intuitive meaning of the REA ontological categories.

Table 3. REA ontological categories

Concept Intuitive Meaning
Economic Resource A thing that users of business application want

to plan, monitor and control
Economic Resource Type A type or group of economic resources
Economic Event Type A type or group of economic events
Economic Agent Type A type or group of economic agents
Economic Event
 In exchange A moment or time interval during which rights

to an economic resource are transferred from
one economic agent to another

 In conversion A time interval during which resources change
their features or existence, and economic agents
receive or lose (in the case of changed existence)
or transfer (in the case of changed features)
physical control over the resource

Economic Agent
 In exchange A legal entity possessing rights to an economic

resource
 In conversion A person having physical control over an eco-

A. REA Ontology 349

nomic resources
Characterization A relationship between economic resource type,

economic event type and economic agent type.
Responsibility
 In exchange A relationship specifying hierarchical structure

of legal entities
 In conversion A relationship specifying responsibility of a per-

son for another person.
Duality
 In exchange A relationship between one or more economic

events linked to inflow, and one or more eco-
nomic events linked to outflow

 In conversion A relationship between one or more economic
events linked to produce, and one or more eco-
nomic events linked to use or consume

Participation
 In exchange A relationship between an economic event and

an agent receiving and losing rights to economic
resources, i.e. common concept for provide and
receive

 In conversion A relationship between an economic event and
an agent receiving and losing physical control
over economic resources, i.e. common concept
for provide and receive

Stockflow
 In exchange A relationship between an economic event and a

resource specifying inflow and outflow of the
rights to the resource

 In conversion A relationship between an economic event and a
resource specifying produce, use and consume
of the resource

Commitment
 In exchange Promise of an economic event representing in-

flow or outflow of resources
 In conversion Promise of an economic event representing pro-

duce, use or consume of resources
Contract/Schedule
 In exchange A collection of commitments and terms, which

are components of a contract
 In conversion A collection of commitments and terms which

are components of a schedule

B. Notes on Modeling

This book contains many examples of business models. All of them have
something in common. We have tried to formulate the fundamental princi-
ples that the models in this book try to follow. We started to compile these
principles in order to capture the essence of the way we model business
processes and, consequently, design business applications. The ultimate
goal is to design a scalable business process model of the enterprise that is
open to extensions over time.

This section describes the driving force behind such models. The princi-
ples can be used to evaluate various business process modeling ap-
proaches, as well as your own models if you want them to have the same
essence as the models in this book.

B.1 There Is No Top-Level Business Process

We consider a business system as a value chain of independent processes.
The approach with the top-level process, which is decomposed into lower-
level processes, is suitable only for very simple systems. The top-level
processes often tend to change as the business application evolves. What
has been originally perceived as the top process might become less impor-
tant over time as the business conditions change. The top-down approach
is useful for describing existing systems, and for developing systems that
are static, but not as a method for developing systems that can evolve dur-
ing time.

B.2 Premature Sequential Ordering Is Not Advisable

Many approaches to business modeling describe business processes as
scenarios or sequences of tasks: “First I receive a customer order. Next, I
fulfill the order. Then, I receive the payment from the customer.”

This approach has both advantages and disadvantages. Its advantage is
that the description it is easy to understand. It gives users a time axis, and

352 B. Notes on Modeling

well-defined points on where to start and where to end. It is often useful to
offer such a view of business processes, simply because describing busi-
ness processes in this way is intuitive for the users.

However, when we design a software solution that should support the a
process specified as a sequence of steps, we quickly realize that the goal of
the process can be reached in more than one specific sequence: “For some
orders, we require that customer pay before we fulfill the orders.” More-
over, there are exceptions: “The customer might return the goods”; “The
customer might not pay for the goods in due time and must pay a penalty”;
“Sometimes, we cannot fulfill the order.“ The precise and complete de-
scription of a business process in the form of a scenario, necessary for the
executable software model, then becomes overly complex.

A better approach is to focus on the essence of the business processes by
describing the purpose of the processes and the list of the applicable activi-
ties, but defer as long as possible specifying their order of execution. If
there are constraints that restrict the order of the activities, they can be ex-
pressed as logical constraints rather than temporal constraints. Often the
ordering can be postponed to as late as runtime, and business processes
emerge over time from specified logical constraints.

B.3 Bottom-Up Approach for Designing the System, and
Top-Down Approach for Explaining It Are Advisable

The top-down approach, also called functional decomposition, means start-
ing with the system as a single function, decomposing it into a small num-
ber of subsystems, and repeating this process for each subsystem until your
reach the level granularity that allows implementation.

The top-down approach is useful in analysis and in developing an un-
derstanding of the business system, but leads to monolithic design when
this approach is applied as a method for developing software.

In the bottom-up approach, we identify the atomic business processes,
create the components corresponding to the business processes as gener-
ally as possible, and combine them into a business system. This approach
allows us to develop business components applicable in contexts other
than our specific system, and to adapt to changes over time.

B.4 Trading Partner View and Independent View 353

B.4 Trading Partner View and Independent View

The models in this book are created from the perspective of a company;
we call this company enterprise. If a model of the same phenomenon is
seen from the perspective of another company, we receive a “mirror im-
age” of this model. For example, a purchase order for the enterprise is a
sales order for the enterprise’s customer; and the enterprise’s sales order is
a purchase order for its vendor.

Models in the trading partner view (i.e. the views of the Customer and
the Vendor) are illustrated in Fig. 227. For example, the Sales process of
the Vendor specifies an outflow of Goods and inflow of Cash to the Ven-
dor. The model of the same process from the perspective of the Customer
is a mirror image of the vendor’s Sales process in Fig. 227. The Purchase
process of the Customer specifies the inflow of Goods and outflow of
Cash from the Customer.

Customer’s Model

Vendor’s Model

«decrement»
«increment»«exchange»

«inflow»«outflow»

«increment» «decrement»
«exchange»

«outflow»«inflow»

«agent» «agent»

«provide» «receive»

«receive»

«provide»

«provide»

«receive»

«receive» «provide»

This is the
same event

«agent»

This is the
same event

«agent»

«exchange process»

«resource» «resource»

«exchange process»

«resource» «resource»

Fig. 227. Exchange process, trading partner view

354 B. Notes on Modeling

In contrast to the trading partner models created from the perspective of
the enterprise, we can create the models from the perspective of an inde-
pendent observer. This independent view is useful in modeling the supply
chain collaboration. An independent view is illustrated in Fig. 228.

Note that in the independent view the concepts of increment and decre-
ment do not exists, economic events represent transfer. Likewise, inflow
and outflow do not exist, and are represented by stockflow.

Intdependent Observer’s Model

«transfer»«stockflow»

«resource»
«transfer»

«stockflow»

«resource»
«exchange»

«receive»

«agent»
«provide»

«agent»

«provide»

«receive»

«exchange process»

Fig. 228. Exchange process, independent view

Models in this book are created using the trading partner view, as is il-
lustrated in Fig. 227.

B.5 Levels of Granularity

The level of granularity describes the size of the modeling elements. The
modeling elements at a high level of granularity can be decomposed to the
modeling elements at a lower level of granularity.

The entities at the highest level of granularity in this book are REA
business processes, such as sales process, procurement, warehouse man-
agement, and human resources. Each business process can be implemented

B.6 Models, Metamodels and UML 355

as an independent business application, but there are business applications
that cover several business processes.

Each REA business process can be decomposed into REA entities, such
as economic resources, events, agents, contracts, and claims.

The lowest level of granularity is the task level, describing details about
how to perform each economic event. We have not discussed the task
modeling in this book, as this is well known from techniques such as flow-
charts and workflows.

Value Chain Level

REA Level

Task Level

Level of
granularity

Signal

duality

Resource

Resource

Resource Resource

«decomposition»

«decomposition»

Fig. 229. Levels of granularity

B.6 Models, Metamodels and UML

We use UML (UML Superstructure Specification 2005) for the notation in
the models and diagrams in this book. When we refer in a text to a concept
shown in a diagram, we write it in italics.

356 B. Notes on Modeling

The diagram in Fig. 230 illustrates models of the real world at three lev-
els of abstraction: the runtime model, the REA application model and the
REA metamodel.

Fig. 230. Metamodel, application model, runtime model and the real world

The real world contains the actual real world entities that users of busi-
ness applications want to monitor using the application.

The runtime model contains software representations of the real world
entities, for example, in a computer memory or in a database. We call the
entities in this model runtime instances. In UML, the names of the entities
in the runtime model are written with an underlined font, such as Cash.

B.6 Models, Metamodels and UML 357

The REA application model is an actual configuration of a business
software application. This model specifies the behavior and structure of the
instances in the runtime model. For example, the application model in
Fig. 230 specifies that every Cash instance must be related to zero or more
Cash Disbursement instances. The runtime model conforms to this rule:
there are two Cash objects, one is related to Cash Disbursement and the
other is not. Cash may even be related to several Cash Disbursements, for
example, if the same bill is received and given away several times. In the
UML, the names of entities in the application model are shown in bold
font, such as Cash. The text in guillemets, such as «outflow», represents
the names of metamodel elements shown in the application model. This
naming convention is not strictly UML (where text in guillemets means
stereotypes), but we use it for convenience.

The REA metamodel level specifies constraints and rules for construct-
ing application models. For example, the metamodel in Fig. 230 specifies
that every economic resource must be related to one or more decrements,
and the application model conforms to this rule: the Cash resource is re-
lated to the Cash Disbursement decrement. However, we can construct
other application models in which the Cash would be related to several
decrements, such as Cash Disbursement and Penalty Payment.

C. Patterns and Pattern Form

Patterns are elements of reusable design. Patterns specify abstractions and
models above the implementation level; thus, a pattern can be imple-
mented in many different ways depending on the technical and implemen-
tation platform. Patterns have usually carefully selected names, therefore,
patterns also create a common vocabulary for expressing designing con-
cepts. The patterns in this book are written in a modified Coplien form
(Coplien 1996); each pattern consists of the following sections:

Name is a name of the pattern. References to a pattern are written in
capital italics, e.g., REA EXCHANGE PROCESS.
Context describes the situation in which the pattern may be applied.
Problem formulates a problem that repeatedly arises in the given con-
text.
Forces are constraints that restrict the solution of the problem, require-
ments, and properties that the solution must have.
Solution, in this book, is a model that solves the problem and satisfies
the forces.
Design shows how the solution can be implemented in a software appli-
cation.
Examples illustrate how the pattern can be applied.
Resulting Context outlines consequences of the solution that the user
should be aware of.

When reading a pattern, we recommend focusing on the Problem and
the Solution sections first. The problem and solution usually capture the
essence of the pattern, and other sections are needed to understand the de-
tails.

However, to fully understand what patterns are all about, we recom-
mend the readers to write one or two. Pattern writers can get expert help in
writing (and, consequently, understanding) patterns if they submit them to
one of the pattern conferences, such as PLoP (Pattern Languages of Pro-
grams). More information on pattern conferences, and patterns in general,
can be found at http://www.hillside.net.

References

Appleton B (2000) Patterns and Software: Essential Concepts and Terminology,
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html

Arlow J, Neustadt I (2003) Enterprise Patterns and MDA: Building Better Soft-
ware with Archetype Patterns and UML, Addison-Wesley Professional

Arnold TRJ (1991) Introduction to Materials Management, 3rd edition, Prentice-
Hall Inc.

Borch SE (2004) Typification in REA, First International REA Technology Work-
shop, Copenhagen 2004

Carroll L (1996) The Complete Illustrated Lewis Carroll, Wordsworth Editions,
Ltd. Herfordshire

Coad P, Lefebvre E, DeLuca J (1999) Java Modeling in Color with UML, Enter-
prise Components and Process, Prentice Hall PTR, New York

Cockburn A (2000) Writing Effective Use Cases, Addison-Wesley Professional
Coplien J (1996): Software Patterns, SIGS Publications, New York,
Czarnecki K. Eisenecker UW (2000): Generative Programming - Methods, Tools,

and Applications, Addison-Wesley
David JS (1997) Three events that define an REA Methodology for Systems

Analysis, Design and Implementation. Proceedings of the Annual Meeting of
the American Accounting Association, 1997

Dunn CL, Cherrington OJ, Hollander AS (2004) Enterprise Information Systems:
A Pattern Based Approach, McGraw-Hill/Irwin, New York

Evans E (2003) Domain-Driven Design: Tackling Complexity in the Heart of
Software, Addison-Wesley Professional

Eriksson HE, Penker M (2000) Business Modeling with UML, John Wiley &
Sons, Inc.

Fowler M (1996) Analysis Patterns: Reusable Object Models, Addison-Wesley
Professional

Graham I (1998) Requirements Engineering and Rapid Development, Addison
Wesley

Geerts GL, McCarthy WE (1997) Using Object Templates from the REA Ac-
counting Model to Engineer Business Processes and Tasks. Paper presented at
European Accounting Congress, Graz, Austria.

Geerts GL, McCarthy WE (2000a) The Ontological Foundations of REA Enter-
prise Information Systems. Paper presented at the Annual Meeting of the
American Accounting Association, Philadelphia, PA.

362 References

Geerts GL, McCarthy WE (2000b) Augmented Intensional Reasoning in Knowl-
edge-Based Accounting Systems. Journal of Information Systems, Volume
14, No. 2, 2000, pp. 127-150.

Geerts GL, McCarthy WE (2002) An Ontological Analysis of the Primitives of the
Extended REA Enterprise Information Architecture” at http://www.msu.edu/
user/mccarth4/

Greenfield J, Short K (2004) Software Factories: Assembling Applications with
Patterns, Models, Frameworks, and Tools, Wiley and Sons

Gruber TR (1996) A Translation Approach to Portable Ontologies. Knowledge
Acquisition, 5(2):199-220

Forman IR, Danforth SH (1998) Putting Metaclasses to Work, A New Dimension
in Object-Oriented Programming, Addison-Wesley Longmann, Inc.

Haugen, B (2005) Resources and Rights, Discussion in REA Technology Mailing
List, http://groups.yahoo.com/group/REATechnology

Hay DC (1996) Data Model Patterns, Conventions of Thought Dorset House Pub-
lishing, New York

Hay DC, Healy KA (2000) Business Rules, What Are They Really? The Business
Rules Group

Hessellund A, Balthazar S, Chohan A (2005) REA-VMI Model, A General
Framework for Vendor Managed Inventory (In Danish). MSc. Thesis, IT Uni-
versity Copenhagen

Henglein F et al (2006): Formal Specification of Commercial Contracts, Journal
on Software Tools for Technology Transfer

Hollander AS, Denna E, Cherrington OJ (1999) Accounting Information Technol-
ogy and Business Solutions, Irwin/McGraw-Hill

IDEF0, Integration Definition for Function Modeling (1993) National Institute of
Standards and Technology, FIPS publication 183, http://www.idef.com/
idef0.html

Jaquet M (2003) Realistic – A REA Model without Perspectives (In Danish).
MSc. Thesis, IT University Copenhagen

Kiczales G et al (1996) Aspect-Oriented Programming, ECOOP 1996, Jyväskylä,
Finland

Lampe JC (2002) Discussion of an Ontological Analysis of the Economic Primi-
tives of the Extended-REA Enterprise Information Architecture. International
Journal of Accounting Information Systems, March 2002 pp.17-34.

Lieberherr K J (1997) Inventor’s Paradox, http://www.ccs.neu.edu/research/
 demeter/adaptive-patterns/AOP/IP.html
Marshall C (2000) Enterprise Modeling with UML: Designing Successful Soft-

ware Through Business Patterns, Addison Wesley Longman, Inc.
McCarthy WE (1982) The REA Accounting Model: A Generalized Framework

for Accounting Systems in a Shared Data Environment. The Accounting Re-
view (July 1982) pp. 554-78

Mellor SJ, Balcer MJ (2002) Executable UML, A Foundation for Model-Driven
Architecture, Addison-Wesley

Meyer B (1997) Object-Oriented Software Construction, second edition, Prentice
Hall, Inc.

References 363

MDA Guide Version 1.0.1 (2003) OMG document omg/03-06-01.
Peyton-Jones S, Eber JM (2003): How to write a financial contract. In Jeremy

Gibbons and Oege de Moor, editors, The Fun of Programming. Palgrave
Macmillan

Polya G (1982) How to Solve It: A New Aspect of Mathematical Method, Prince-
ton University Press

Porter M (1980) Competitive Strategy: Techniques for Analyzing Industries and
Competitors, Free Press, New York

Rising L, Manns ML (2004) Fearless Change: Patterns for Introducing New Ideas,
Addison-Wesley Professional

Rothbard MN (1978) For a New Liberty, Libertarian Manifesto, Collier Macmil-
lan Publishers, London

Samuelson PA, Nordhaus WD (1989) 13 edition, Economics, McGraw-Hill, Inc.
Sowa JF (1999) Knowledge Representation: Logical, Philosophical, and Computa-

tional Foundations, Course Technology
Silverston L, Inmon WH, Graziano K (1997) Data Model Resource Book, A Li-

brary of Logical data Models and Data Warehouse Designs, John Wiley &
Sons, New York, Chichester, Weinheim, Brisbane, Singapore, Toronto

UML 2.0 Superstructure Specification (2005), OMG document formal/05-07-04

Index

account
financial, 189
in double entry, 191
in REA, 184
inventory, 191

account level, 188
activity diagram, 79
addition, 185
address

as location, 173
as notification, 216
e-mail, 162
internet, 162
shipment, 174

advertising, 308
agreement, 104
apartment, 19, 24
application model, 355
archetype, 3
aspect-oriented programming, 150
assembly, 282
author, 221

balance, 188
behavioral patterns, 147, 231
bill of material, 119
business process

alternative models, 78
conversion, 42
exchange, 13
value chain, 62

business semantics, 231

cargo, 175
cash, 269
cash account, 189

cash receipt, 261
cash sale, 260
category, 165
chain of conversion processes, 278
claim, 16, 30, 193
classification, 164

age, 168
customer group, 168

commitment, 3, 91
fully specified, 97
violated, 333

consume relationship, 44, 69
contact person, 32
context

in pattern form, 357
contract, 3

clauses, 100
examples, 321
terms, 100

control, 56
conversion

factor, 226
process, 3, 38, 47, 64
reciprocity, 93, 95

conversion process, 42
cost, 73
courier service, 291
credit memo, 196
crosscutting, 150, 232
currency class, 134
custody, 123
customer, 6

data access layer, 129, 136
Data Universal Numbering System,

163

366 Index

database, 129, 135, 249
date

in due date pattern, 205
in posting pattern, 178
of economic event, 23

decrement event, 25
Description aspect, 239
description pattern, 211
dimension

in account pattern, 188
in posting pattern, 179

domain model, 129
domain model component, 134
domain rules

at policy level, 97
for conversion process, 40
for exchange process, 15
for value chain, 64

double entry accounting, 191
duality

in conversion, 51
in exchange, 26
in ontology, 346

due date, 205
DueDate aspect, 236

ebXML, 4
economic agent, 2

in conversion process, 54
in exchange process, 31

economic event, 2
in conversion process, 46
in exchange process, 21

economic resource, 2, 70
in conversion process, 42
in exchange process, 17
in value chain, 69
individually identifiable, 74
individually unidentifiable, 74
transient, 317

economic resources
creating new, 274
individually identifiable, 266
individually unidentifiable, 269
modifying, 281

education, 298

electricity, 317, 319
employee, 275
employment, 327
enterprise, 2, 275, 322
entry

in double entry, 191
in posting pattern, 179

European Article Numbering, 163
events, 239
exchange

duality, 26
process, 3, 13, 15, 17, 21, 64
reciprocity, 93, 95

features, 43, 57
fees, 301
financing, 269
flow chart, 79
forces, 14

in pattern form, 357
framework, 150
Fulfill() method, 132
fulfillment, 92, 95
fulfillment page, 139
function modeling method, 78

generic database model, 254
goods on stock, 191
goods to receive, 191
granularity, 352
group, 82, 90
guarantee, 328

ID field, 131
IDEF0, 78
Identification aspect, 236
identification aspect pattern, 154
identifier, 158
identifier setup, 158
increment, 25
independent view, 351
inflow relationship, 19
initiator, 200
inspection, 282
insurance, 331
intellectual property, 55

Index 367

International Standard Book
Number, 163

International Standard Music
Number, 163

International Standard Serial
Number, 163

inventor’s paradox, 229
invoice, 195
itinerary, 175

Joe’s Pizzeria, 5, 35
Joe’s Web, 129, 137

labor, 77, 275, 327
acquisition, 10, 293, 326
of the salesmen, 292

lend, 22
level rule, 188
library, 17, 22, 34, 196
linkage, 117
list price, 73
loan

of individually identifiable
resources, 266

of individually unidentifiable
resources, 269

receipt, 269
return, 269

location, 23, 172

maintenance, 26, 56, 281
marketing, 308
material issue, 275
materialized claim, 192
matrix rule, 114
message, 216
metamodel, 355
Microsoft Navision, 242
mitigation plan, 107
model level, 152
model level, 151
model-based framework, 243
modeling handbook, 257
moment in time, 23
money

bills and coins, 75

name
employee, 162
in pattern form, 357

Name field, 131
note, 220, 221
notification, 215
Notification aspect, 238

offer, 101
OLAP, 129
OLAP cube, 141
Open-edi, 4
order website, 127
outflow relationship, 19, 69

participation relationship, 346
pattern form, 357
pattern map, 10
payment line, 101
people management, 295
pleomorph, 3
PLoP conference, 357
policy, 110
position, 173
posting, 178, 185
price, 194, 200, 204, 227, 264, 302,

324
problem

in pattern form, 357
produce relationship, 44, 69
product

creating new, 274
intermediate, 278
modifying, 281
return, 263
serial number, 162

product return, 330
project, 108
provide relationship

in conversion process, 55
in exchange process, 33

purchase order, 322
purchase process, 9

qualification, 168
quantity, 23, 70, 227

368 Index

required, 118
used, 118

quantity on hand, 71
quote, 101

REA
ontology, 345
value chain, 69
what is, 2

REA model, 129
REA model component, 131
receive relationship

in conversion process, 55
in exchange process, 33

reciprocity relationship, 93
reconciliation, 199
reconciliation method, 201
rental, 24, 266
reservation relationship, 96, 340
resource value flow, 64
responsibility, 120
rights

alternative models, 18
in conversion process, 55
in exchange process, 17

route segment, 173
runtime model, 354

salary, 327
sale, 261

and shipment, 290
sales line, 101
sales order, 8, 101

number, 161
sales process, 6
sales tax, 301
schedule, 106
services as resources, 285, 314
settlement, 194
social security number, 161
solution

in pattern form, 357
specification relationship, 87
stockflow relationship, 346

storage, 249
storing aspect data, 253
subtraction, 185
Sunday rule, 113
supervisor, 275

task, 233
task management system, 233
TaskIdSequence, 234, 244
tax group, 168
taxes, 301
terminator, 200
thirdness, 346
time interval, 23, 48
time order of events

in conversion process, 53
in exchange process, 29

trading partner view, 7, 351
transport, 175, 339
type, 86, 90

unit of measure, 226
unit price, 73
use relationship, 44, 69
user interface, 240

value, 28, 52, 224, 225
components of, 225
negative, 72
of the resource, 71

value chain, 59, 62
process for creating, 65

value-added tax (VAT), 301
vendor, 9
Visual Basic, 235

waste, 311
weaving, 150
web page, 127
work breakdown structure, 119

XML document, 243
XSL stylesheet, 245, 246, 250

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

